Skip to main content
Log in

Deposition of transistion metal Mn doped BTO thin films by sol–gel technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This present work reports about bismuth titanate [Bi4Ti3O12, BTO] thin films with Mn doped coating on a glass substrate by applying spin coating method. The prepared films are characterized by X-ray diffraction (XRD), scanning electron microscopy, photoluminescence (PL) and Ultra Violet–Visible spectroscopy (UV–Vis). XRD analysis reveals the polycrystalline nature and orthorhombic structure of BTO thin films. Surface morphology discloses the influence of Mn doped on surface texture. Optical band gap values of BTO films decrease with respect to doping concentration. PL spectra of BTO films display broad green emission peaks at 520 nm under an excitation of 380 nm. The optical parameters like refractive index (n), extinction coefficient (α), dielectric constant (ε), optical conductivity (σ), electrical susceptibility (χ) are calculated and reported for the first time by using UV–Vis transmittance measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.Y. Yau, R. Palan, K. Tran, R.C. Buchanan, Appl. Phys. Lett. 86, 32907 (2005)

    Article  Google Scholar 

  2. J.H. Kim, J.K. Kim, S.Y. Heo, Thin Solid Films. 503, 60 (2006)

    Article  Google Scholar 

  3. S. Roy, R. Maharana, M. Veena, A. kumar, S. Bysakh, Thin Solid Films 589, 686–691 (2015)

    Article  Google Scholar 

  4. M.H. Lin, M.C. Wu, C.C. Lin, T.Y. Tseng, Ferroelectrics 380, 30–37 (2009)

    Article  Google Scholar 

  5. J.F. Dorrarin, R.E. Newhham, D.K. Smith, Ferroelectrics 3, 17–27 (1971)

    Article  Google Scholar 

  6. Y.M. Kan, G.J. Zhang, P.L. Wang, Y.B. Cheng, J. Eur. Ceram. Soc. 28, 1641–1647 (2008)

    Article  Google Scholar 

  7. B. Yang, D.M. Zhang, B. Zhou, L.H. Huang, C.D. Zheng, Y.Y. Wu, D.Y. Guo, J. Yu, J. Cryst. Growth 310, 4511–4515 (2008)

    Article  Google Scholar 

  8. M.C. Kao, H.Z. Chen, S.L. Young, Mater. Lett. 62, 3243–3245 (2008)

    Article  Google Scholar 

  9. X.J. Zheng, J.F. Peng, Y.Q. Chen, L. He, X. Feng, D.Z. Zhang, L.J. Gong, Thin Solid Films 519, 714–718 (2010)

    Article  Google Scholar 

  10. Y. Noguchi, K. Yamamoto, Y. Kitanaka, M. Miyauama, J. Eur. Ceram. Soc. 27, 4081–4084 (2007)

    Article  Google Scholar 

  11. M.C. Kao, H.Z. Chen, S.L. Young, M.H. Kao, Thin Solid Films 570, 543–546 (2014)

    Article  Google Scholar 

  12. L.R. Wang, C.C. Chen, Z.H. Tang, C.H. Lu, B.H. Yu, Vacuum 85, 203–206 (2010)

    Article  Google Scholar 

  13. M.C. Kao, H.Z. Chen, S.L. Young, Thin Solid Films 528, 143–146 (2013)

    Article  Google Scholar 

  14. Z. Hu, G. Wang, Z. Huang, J. Chu, J. Appl. Phys. 93, 3811–3815 (2003)

    Article  Google Scholar 

  15. H.G. Wang, J. Xu, C. Ma, F. Xu, L. Wang, L. biab, A. Chang, J. Alloys Compd. 615, 526–530 (2014)

    Article  Google Scholar 

  16. X.S. Wang, J.W. Zhai, L.Y. Zhang, X. Yao, Infrared Phys. 40, 55–60 (1999)

    Article  Google Scholar 

  17. Y. Zhang, D. Xie, Y. Chen, X. Wu, G. Li, D. Plant, Int. Ferroelectr. 134, 1–8 (2012)

    Google Scholar 

  18. J.E. Alfonso, J.J. Olaya, C.M. Bedoya-Hincapie, J. Toudert, R. Serna, Materials 7, 3427–3434 (2014)

    Article  Google Scholar 

  19. Y.M. Chen, R.J. Zhang, Y.X. Zheng, P.H. Mao, W.J. Lu, L.Y. Chen, J. Korean Phys. Soc. 53, 2299–2302 (2008)

    Article  Google Scholar 

  20. P. Gautam, S.K. Singh, R.P. Tandon, J. Alloys Compd. 606, 132–138 (2014)

    Article  Google Scholar 

  21. W. Yunyi, Z. Duanming, Y. Jun, W. Yunbo, J. Appl. Phys. 105, 061613 (2009)

    Article  Google Scholar 

  22. M.P. Besland, H.D.A. Aissa, P.R.J. Banroy, S. Lafane, Thin Solid Films 495, 86–91 (2006)

    Article  Google Scholar 

  23. L. Sun, F. Gao, Q. Huang, J. Alloys Compd. 588, 158–162 (2014)

    Article  Google Scholar 

  24. M. Vehkamaki, T. Hatanpaa, M. Kemel, M. Ritala, M. Leskela, Chem. Mater. 18, 3883–3888 (2006)

    Article  Google Scholar 

  25. P.C. Joshni, S.B. Desu, J. Appl. Phys. 80, 2349 (1996)

    Article  Google Scholar 

  26. M.H. Tang, Y.C. Zhou, X.J. Zheng, Z. Yan, C.P. Cheng, Z. Ye, Z.S. Hu, Solid State Electron. 51, 371–375 (2007)

    Article  Google Scholar 

  27. P. Fuierer, B. Li, J. Am. Ceram. Soc. 85, 299–304 (2002)

    Article  Google Scholar 

  28. F. Yakuphanoglu, A. Tataroglu, A. Ahmed, A.L. Chermdi, R.K. Gupta, A.T. Yusuf, Z. Serbetic, S.B. Omran, F. El-Tantawy, Sol. Energy Mater. 133, 69–75 (2015)

    Article  Google Scholar 

  29. G.D. Yun, L.M. Ya, L. Jun, Y.B. Fang, P. Ling, W.Y. Bo, Y. Jun, Sci. China Ser. E 51, 10–15 (2008)

    Article  Google Scholar 

  30. V. Selvamurugan, G. Mangamma, A. Marikani, D. Madhavan, M. Kamruddin, J. Chem. Pharm. Sci. 11, 189–192 (2015)

    Google Scholar 

  31. S.C. Roy, G.L. Sharma, M.C. Bhatnagar, Solid State Commun. 141, 243 (2007)

    Article  Google Scholar 

  32. C. Jia, Y. Chen, W.F. Zhang, J. Appl. Phys. 105, 113108 (2009)

    Article  Google Scholar 

  33. A. Kuang, X. Li, Thin Solid Films 283, 81–83 (1996)

    Article  Google Scholar 

  34. H.Z. Chen, B. Yang, M. Zhang, F. Wang, K. Cheah, W.W. Cao, Thin Solid Films 518, 5585–55587 (2010)

    Article  Google Scholar 

  35. S.M. Alnaimi, M.N. AL-Dileamy, Int. J. Pure Appl. Phys. 3, 30–39 (2007)

    Google Scholar 

  36. J.C. Manifaceire, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1102 (1976)

    Google Scholar 

  37. N.M. Torkaman, N.M. Ganjkhanlou, Y. Kazemzad, Mater. Charact. 61(3), 362 (2010)

    Article  Google Scholar 

  38. J. Ma, X. Meng, J. Sun, T. Lin, F. Shi, J. Chu, J. Phys. D 37, 3160–3164 (2004)

    Article  Google Scholar 

  39. X.S. Wang, J.W. Zhai, L.Y. Zhang, Infrared Phys. Technol. 40, 55–60 (1999)

    Article  Google Scholar 

  40. M.S. Dresselhaus, Solid State Phys. II 4, 6489–6493 (1999)

    Google Scholar 

  41. R. Paschotta, in Chromatic Dispersion. Encyclopedia of Laser Physics and Technology (Wiley, Weinheim, 2015)

    Google Scholar 

  42. Z. Serbetci, B. Gunduz, A.A. AL-Ghamdi, F. Al-Hazmic, K. Arik, F. EL-Tantawy, F. Yakuphanoglu, W.A. Farooq, Acta. Phys. Pol. A. 126, 798–807 (2014)

    Article  Google Scholar 

  43. F. Miao, B. Tao, P.K. Chu, Mater. Res. Bull. 61, 238–244 (2004)

    Article  Google Scholar 

  44. Z.G. Hu, J.H. Ma, Z.M. Huang, Y.N. Wu, G.S. Wang, Appl. Phys. Lett. 83, 3686 (2003)

    Article  Google Scholar 

  45. N.E. Kaufmann, Characterization of Materials (Wiley, Hoboken, 2003), p. 681

    Google Scholar 

  46. H. Gu, Z. Hu, Y. Hu, Y. Yuan, J. You, W. Zou, Colloid Surf. A 31, 5294 (2008)

    Google Scholar 

  47. M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 106, 4036–4039 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Anandhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roselin, A.A., Anandhan, N. & Dharuman, V. Deposition of transistion metal Mn doped BTO thin films by sol–gel technique. J Mater Sci: Mater Electron 29, 12036–12044 (2018). https://doi.org/10.1007/s10854-018-9309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9309-4

Navigation