Skip to main content
Log in

Pb/S/1,2-ethanedithiol composite thin films for efficient solid-state quantum-dot sensitized TiO2 nanorod array solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Pb/S/1,2-ethanedithiol composite thin films were successfully deposited on TiO2 nanorod arrays by spin-coating step-by-step 5 mmol dm−3 Pb(NO3)2, Na2S and 1% 1,2-ethanedithiol solution and their chemical compositions can be easily adjusted by changing the concentration of Na2S solution from 5 to 3.5 mmol dm−3 and 2 mmol dm−3. The average crystal sizes of Pb/S/1,2-ethanedithiol quantum-dots decreased from 7.9 to 7.1 nm and 6.5 nm with the decrease of the concentration of Na2S solution and the chemical bonding of Pb2+ and S in EDT was chelation of the penta-heterocycle in Pb/S/1,2-ethanedithiol composite thin films. All solid-state Pb/S/1,2-ethanedithiol composite thin film sensitized TiO2 nanorod array solar cells using 5, 3.5, 2 mmol dm−3 Na2S solution exhibited the photoelectric conversion efficiency of 2.68, 3.41 and 4.51% under the illumination of simulated AM 1.5 sunlight (100 mA cm−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kongkanand, K. Tvrdy, K. Takechi, K. Kuno, P.V. Kamat, Quantum dot solar cells tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130(12), 4007–4015 (2008)

    Article  Google Scholar 

  2. D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Solid C 155, 294–322 (2016)

    Article  Google Scholar 

  3. S. Dagher, Y. Haik, N. Tit, A. Ayesh, PbS/CdS heterojunction quantum dot solar cells. J. Mater. Sci. 273, 3328–3340 (2016)

    Google Scholar 

  4. X. Li, W. Lu, Y. Wang, W. Fang, L. Wang, Q. Ai, X. Zhou, Y. Lin, Pre-synthesized monodisperse PbS quantum dots sensitized solar cells. Electrochim. Acta 144(144), 71–75 (2014)

    Article  Google Scholar 

  5. S. Jiao, J. Wang, Q. Shen, Y. Li, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. A 4(19), 7214–7221 (2016)

    Article  Google Scholar 

  6. S.H. Im, H.-J. Kim, S.W. Kim, S.-W. Kim, S.I. Seok, All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells. Energy Environ. Sci. 4(10), 4181–4186 (2011)

    Article  Google Scholar 

  7. J.-W. Lee, D.-Y. Son, T.K. Ahn, H.-W. Shin, I.Y. Kim, S.-J. Hwang, M.J. Ko, S. Sul, H. Han, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3(7431), 1050–1058 (2013)

    Article  Google Scholar 

  8. S.H. Im, H.-J. Kim, S.W. Kim, S.-W. Kim, S.I. Seok, Improved air stability of PbS-sensitized solar cell by incorporating ethanedithiol during spin-assisted successive ionic layer adsorption and reaction. Org. Electron. 13(11), 2352–2357 (2012)

    Article  Google Scholar 

  9. F. Cai, F. Yang, Y. Zhang, C. Ke, C. Cheng, Y. Zhao, G. Yan, PbS sensitized TiO2 nanotube arrays with different sizes and filling degrees for enhancing photoelectrochemical properties. Phys. Chem. Chem. Phys. 16(43), 23967–23974 (2014)

    Article  Google Scholar 

  10. L. Yu, J. Jia, G. Yi, M. Han, Photoelectrochemical properties of PbS quantum dot sensitized TiO2 nanorods photoelectrodes. RSC Adv. 6(40), 33279–33286 (2015)

    Article  Google Scholar 

  11. Z. Zhang, C. Shi, J. Chen, G. Xiao, L. Li, Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl. Surf. Sci. 410, 8–13 (2017)

    Article  Google Scholar 

  12. G. Xiao, C. Shi, Z. Zhang, N. Li, L. Li, Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells. J. Solid. State. Chem. 249, 169–173 (2017)

    Article  Google Scholar 

  13. M. Wang, C. Shi, J. Zhang, N. Wu, C. Ying, Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells. J. Solid State Chem. 231, 20–24 (2015)

    Article  Google Scholar 

  14. J. Zheng, L.-E. Mo, W. Chen, L. Jiang, Y. Ding, Z. Li, L. Hu, S. Dai, Surface states in TiO2 submicrospheres films and its effect on electron transport. Nano Res. 10(11), 3671–3679 (2017)

    Article  Google Scholar 

  15. Z. Li, L.-E. Mo, W. Chen, X. Shi, N. Wang, L. Hu, T. Hayat, A. Alsaedi, S. Dai, Solvothermal synthesis of hierarchical TiO2 microstructures with high crystallinity and superior light scattering for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interface 9(37), 32026–32033 (2017)

    Article  Google Scholar 

  16. Q.-F. Han, F. Jin, W.-J. Yang, D.-P. Sun, X. Wang, Liquid-liquid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres. Mater. Lett. 69, 10–12 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51272061, 51472071) and Talent Project of Hefei University of Technology (75010-037004, 75010-037003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwu Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Shi, C., Lv, K. et al. Pb/S/1,2-ethanedithiol composite thin films for efficient solid-state quantum-dot sensitized TiO2 nanorod array solar cells. J Mater Sci: Mater Electron 29, 11783–11789 (2018). https://doi.org/10.1007/s10854-018-9277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9277-8

Navigation