Skip to main content
Log in

Effect of IrO2/Pt, IrO2, and Pt bottom electrodes on the structure and electrical properties of PZT based piezoelectric microelectromechanical system devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In piezoelectric microelectromechanical system devices with PbZr x Ti1−xO3 as the ferroelectric, the bottom electrode can provide a template for oriented PbZr x Ti1−xO3 growth. IrO2/Pt, IrO2, and Pt bottom electrode layers were sputter deposited onto TiO2 and were used as growth templates for oriented PbZr0.52Ti0.48O3 growth. The IrO2 and Pt were found to be {100}- and {111}-oriented, respectively, by X-ray diffraction. Scanning/transmission electron microscopy results indicate that the bottom electrodes are textured; however, the PbZr0.52Ti0.48O3 layer is partially textured. The impact of the bottom electrode type on the electrical properties is investigated by dielectric, ferroelectric, and piezoelectric measurements on circular capacitors formed on blanket PbZr0.52Ti0.48O3 films and unimorph cantilevers. For devices with PbZr0.52Ti0.48O3 on IrO2/Pt bottom electrodes, values for the dielectric constant of 1103 ± 28, loss tangent of 0.070 ± 0.004, maximum polarization of 0.399 ± 0.003 C/m2 at 38 MV/m, and leakage current of 5.4 ± 5.8 nA at 20 MV/m were obtained. Values of normalized strain of 0.0030 ± 0.0001 at 20 MV/m, and effective piezoelectric coefficient, d31,f, of 100 ± 25 pm/V at 15 MV/m were obtained on cantilever unimorphs with electrode area 16 µm × 123 µm and PZT area 16 µm × 125 µm. These values are comparable to results obtained for PbZr0.52Ti0.48O3 on 100 nm thick Pt-only bottom electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Trupina, C. Miclea, L. Amarande, M. Cioangher, J. Mater. Sci. 46, 6380 (2011)

    Article  Google Scholar 

  2. Y. Gong, C. Wang, Q. Shen, L. Zhang, Appl. Surf. Sci. 285, 324 (2013)

    Article  Google Scholar 

  3. K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, Jpn. J. Appl. Phys. 35, 2210 (1996)

    Article  Google Scholar 

  4. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett. 65, 1522 (1994)

    Article  Google Scholar 

  5. D. Van Genechten, G. Vanhoyland, J. D’Haen, J. Johnson, D.J. Wouters, M.K. Van Bael, H. Van den Rul, J. Mullens, L.C. Van Poucke, Thin Solid Films 467, 104 (2004)

    Article  Google Scholar 

  6. Y. Masuda, T. Nozaka, Jpn. J. Appl. Phys. 42, 5941 (2003)

    Article  Google Scholar 

  7. K. Kushida-Abdelghafar, H. Miki, F. Yano, Y. Fujisaki, Jpn. J. Appl. Phys. 36, L1032 (1997)

    Article  Google Scholar 

  8. K. Kushida-Abdelghafar, M. Hiratani, Y. Fujisaki, J. Appl. Phys. 85, 1069 (1999)

    Article  Google Scholar 

  9. G.R. Fox, S. Sun, T. Takamatsu, Integr. Ferroelectr. 31, 47 (2000)

    Article  Google Scholar 

  10. S. Kim, D. Park, H.-J. Woo, D. Lee, J. Ha, C.S. Hwang, J. Mater. Res. 17, 1735 (2002)

    Article  Google Scholar 

  11. G. Fox, F. Chu, B. Eastep, T. Takamatsu, Y. Horii, K. Nakamura, Inventors Fujitsu Limited, Assignee. Process for producing high quality PZT films for ferroelectric memory integrated circuits. US patent 6,887,716, 3 May 2005

  12. F. Chu, G. Fox, Inventors Ramtron International Corporation, Assignee. Method for manufacturing a ferroelectric memory cell including co-annealing. US patent 6,376,259, 23 Apr 2002

  13. K. Matsuura, M. Tani, Y. Horii, F. Chu, G.R. Fox, B. Eastep, Inventors Fujitsu Limited, Assignee. Semiconductor device having a ferroelectric capacitor and a fabrication process thereof. US patent 6,964,873, 15 Nov 2005

  14. D.M. Potrepka, R.G. Polcawich, H. Yu, M. Rivas, M. Aindow, G.R. Fox, Thin Solid Films 638, 127 (2017)

    Article  Google Scholar 

  15. L.M. Sanchez, D.M. Potrepka, G.R. Fox, I. Takeuchi, K. Wang, L.A. Bendersky, R.G. Polcawich, J. Mater. Res. 28, 1920 (2013)

    Article  Google Scholar 

  16. G.R. Fox, D.M. Potrepka, R.G. Polcawich, J. Mater. Sci. Mater. Electron. 29, 412 (2018)

    Article  Google Scholar 

  17. R.Q. Rudy, K.M. Grove, M. Rivas, J. Guerrier, C. Cress, R.R. Benoit, J.L. Jones, E. Glaser, S. Brewer, N. Bassiri-Gharb, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(7), 1135 (2017)

    Article  Google Scholar 

  18. L.M. Sanchez, Optimization of Pb(Zr52Ti48)O3 through improved platinum metallization, use of a PbTiO3 seed layer, and fine tuning of annealing conditions for applications in multilayer actuator MEMS technology, Ph.D. Thesis, University of Maryland, College Park, 2014

  19. M. Pham-Thi, H. Hemery, H. Dammak, J. Eur. Ceram. Soc. 25, 2433 (2005)

    Article  Google Scholar 

  20. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959)

    Article  Google Scholar 

  21. Powder Diffraction File Database, The International Centre for Diffraction Data (ICDD), Newtown Square, PA

  22. B.-H. Hwang, J. Phys. D 34, 2469 (2001)

    Article  Google Scholar 

  23. D. Demjanovic, in Hysteresis in Piezoelectric and Ferroelectric Materials, ed. by I. Mayergoyz, G. Bertotti. The Science of Hysteresis, vol. 3 (Elsevier, San Diego, 2006), pp. 337–465

    Chapter  Google Scholar 

  24. R.G. Polcawich, J.S. Pulskamp, in MEMS Materials and Processes Handbook, ed. by R. Ghodssi, P. Lin. MEMS Reference Shelf (Springer, New York, 2011), pp. 288–290

    Google Scholar 

  25. J.S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, G. Smith, J. Vac. Sci. Technol. B 21(6), 2482 (2003)

    Article  Google Scholar 

  26. Unpublished work performed by M. Rivas at the U.S. Army Research Laboratory that was presented at The IEEE International Symposium on Applications of Ferroelectrics (ISAF), Atlanta Georgia (2017)

  27. Y. Umeno, J.M. Albina, B. Meyer, C. Elsasser, Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.80.205122

    Google Scholar 

  28. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 8–20

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Steven K. Isaacson and Joel L. Martin for process support, Brian K. Power for device fabrication support, and Ryan Q. Rudy for assistance with measurement analyses. The microscopy studies described in this paper were performed using the facilities in the UConn/Thermo Fisher Scientific Center for Advanced Microscopy and Materials Analysis (CAMMA) and were supported in part by a research grant from Thermo Fisher Scientific Company. Funding for this work was provided by US Army contract numbers W911NF-15-2-0118 and W911NF-11-2-0053. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. DoD will provide public access to these results of federally sponsored research in accordance with the DoD Public Access Plan (http://www.dtic.mil/dtic/pdf/dod_public_access_plan_feb2015.pdf).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Potrepka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7097 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potrepka, D.M., Rivas, M., Yu, H. et al. Effect of IrO2/Pt, IrO2, and Pt bottom electrodes on the structure and electrical properties of PZT based piezoelectric microelectromechanical system devices. J Mater Sci: Mater Electron 29, 11367–11377 (2018). https://doi.org/10.1007/s10854-018-9224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9224-8

Navigation