Skip to main content
Log in

Spin accumulation at nonmagnetic interface induced by direct Rashba–Edelstein effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rashba effect describes how electrons moving in an electric field experience a momentum dependent magnetic field that couples to the electron angular momentum (spin). This physical phenomenon permits the generation of spin polarization from charge current (Edelstein effect), which leads to the buildup of spin accumulation. Spin accumulation due to Rashba–Edelstein effect has been recently reported to be uniform and oriented in plane, which has been suggested for applications as spin filter device and efficient driving force for magnetization switching. Here, we report the X-ray spectroscopy characterization Rashba interface formed between nonmagnetic metal (Cu, Ag) and oxide (Bi2O3) at grazing incidence angles. We further discuss the generation of spin accumulation by injection of electrical current at these Rashba interfaces, and its optical detection by time resolved magneto optical Kerr effect. We provide details of our characterization which can be extended to other Rashba type systems beyond those reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science 306, 1910–1913 (2004)

    Article  Google Scholar 

  2. H. Kurebayashi, J. Sinova, D. Fang, A.C. Irvine, T.D. Skinner, J. Wunderlich, V. Novk, R.P. Campion, B.L. Gallagher, E.K. Vehstedt, L.P. Zrbo, K. Vborn, A.J. Ferguson, T. Jungwirth, Nat. Nanotechnol. 9, 211217 (2014)

    Article  Google Scholar 

  3. I.M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Nature 476, 189–193 (2011)

    Article  Google Scholar 

  4. O.M.J. van’t Ervea, A.T. Hanbicki, K.M. McCrearyb, C.H. Li, B.T. Jonker, Appl. Phys. Lett. 104, 172402 (2014)

    Article  Google Scholar 

  5. G.M. Choi, B.C. Min, K.J. Lee, D.G. Cahill, Nat. Commun. 5, 4334 (2014)

    Article  Google Scholar 

  6. Y. Su, H. Wang, J. Li, C. Tian, R. Wu, X. Jin, Y.R. Shen, Appl. Phys. Lett. 110, 042401 (2017)

    Article  Google Scholar 

  7. P. Riego, S. Velez, J.M. Gomez-Perez, J.A. Arregi, L.E. Hueso, F. Casanova, A. Berger, Appl. Phys. Lett. 109, 172402 (2016)

    Article  Google Scholar 

  8. C. Stamm, C. Murer, M. Berritta, J. Feng, M. Gabureac, P.M. Oppeneer, P. Gambardella, Phys. Rev. Lett. 119, 087203 (2017)

    Article  Google Scholar 

  9. O.M.J. van’t Erve, A.T. Hanbicki, K.M. McCreary, C.H. Li, B.T. Jonker, preprint arXiv:1703.03844 [cond-mat.mes-hall] (2017)

  10. J. Puebla, F. Auvray, M. Xu, B. Rana, A. Albouy, H. Tsai, K. Kondou, G. Tatara, Y. Otani, Appl. Phys. Lett. 111, 092402 (2017)

    Article  Google Scholar 

  11. P. Gambardella, I.M. Miron, Philos. Trans. R. Soc. A 369, 3175–3197 (2011)

    Article  Google Scholar 

  12. B. Rana, Y. Fukuma, K. Miura, H. Takahashi, Y. Otani, Appl. Phys. Lett. 111, 052404 (2017)

    Article  Google Scholar 

  13. A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, S. Meguro, Rev. Sci. Instrum. 79, 123905 (2008)

    Article  Google Scholar 

  14. D.A. Allwood, P.R. Seem, S. Basu, P.W. Fry, U.J. Gibson, R.P. Cowburn, Appl. Phys. Lett. 92, 072503 (2008)

    Article  Google Scholar 

  15. G. Hideo Kawaguchi, Tatara, Phys. Rev. B 94, 235148 (2016)

    Article  Google Scholar 

  16. A. Walsh, G.W. Watson, D.J. Payne, R.G. Edgell, J. Guo, P.-A. Glans, T. Learmonth, K.E. Smith, Phys. Rev. B 73, 235104 (2006)

    Article  Google Scholar 

  17. J.C. Rojas-Sanchez, L. Vila, G. Desfonds, S. Gambarelli, J.P. Attane, J.M. De Teresa, C. Magen, A. Fert, Nat. Commun. 4, 2944 (2013)

    Article  Google Scholar 

  18. Y. Astuti, A. Fauziyah, S. Nurhayati, A.D. Wulansari, R. Andianingrum, A.R. Hakim, G. Bhaduri, IOP Conf. Ser.: Mater. Sci. Eng. 107, 012006 (2016)

    Article  Google Scholar 

  19. A.A. Yadav, A.C. Lokhande, P.A. Shinde, J.H. KimEmail, C.D. Lokhande, J. Mater. Sci.: Mater. Electron. 28, 13112 (2017)

    Google Scholar 

  20. S. Karube, K. Kondou, Y. Otani, Appl. Phys. Express 9, 033001 (2016)

    Article  Google Scholar 

  21. J. Kim, Y.-T. Chen, S. Karube, S. Takahashi, K. Kondou, G. Tatara, Y. Otani, Phys. Rev. B 96, 140409(R) (2017)

    Article  Google Scholar 

  22. H. Tsai, S. Karube, K. Kondou, N. Yamaguchi, F. Ishii, Y. Otani, Sci. Rep. 8, 5564 (2018)

    Article  Google Scholar 

  23. H. Bentmann, T. Kuzumaki, G. Bihlmayer, S. Blugel, E.V. Chulkov, F. Reinert, K. Sakamoto, Phys. Rev. B 84, 115426 (2011)

    Article  Google Scholar 

  24. T. Kimura, J. Hamrle, Y. Otani, Phys. Rev. B 72, 014461 (2005)

    Article  Google Scholar 

  25. T. Kimura, Y. Otani, Phys. Rev. Lett. 99, 196604 (2007)

    Article  Google Scholar 

  26. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  Google Scholar 

  27. S. Manipatruni, D.E. Nikonov, I.A. Young, Nat. Phys. 14, 338–343 (2018)

    Article  Google Scholar 

  28. J. Varignon, L. Vila, A. Barthelemy, M. Bibes, Nat. Phys. 14, 322–325 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Yoshio Maebashi for technical support. This work was supported by Grant-in-Aid for Scientific Research on Innovative Area, “Nano Spin Conversion Science” (Grant No. 26103002) and RIKEN Incentive Research Project Grant No. FY2016. F.A. was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Scholarship, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Puebla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auvray, F., Puebla, J., Xu, M. et al. Spin accumulation at nonmagnetic interface induced by direct Rashba–Edelstein effect. J Mater Sci: Mater Electron 29, 15664–15670 (2018). https://doi.org/10.1007/s10854-018-9162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9162-5

Navigation