Skip to main content
Log in

Large enhancement of upconversion luminescence in Er3+/In3+:Ba0.85Ca0.15TiO3 lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x ≤ 2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Haase, H. Schaefer, Angew. Chem. Int. Ed. 50, 5808 (2011)

    Article  Google Scholar 

  2. H.Q. Yu, T. Li, B.J. Chen, Y.B. Wu, Y. Li, J. Colloid Interface Sci. 400, 175–180 (2013)

    Article  Google Scholar 

  3. G. Glaspell, J. Anderson, J.R. Wilkins, M.S. EI-Shall, J. Phys. Chem. C 112, 11527–11531 (2008)

    Article  Google Scholar 

  4. H.Q. Yu, A.S. Yu, Y. Li, Y. Song, Y.B. Wu, C.C. Sheng, B.J. Chen, J. Alloy. Compd. 683, 256–262 (2016)

    Article  Google Scholar 

  5. Y. Huang, F. Rosei, V. Federico, Nanoscale 7, 5178–5185 (2015)

    Article  Google Scholar 

  6. H.Q. Yu, Y. Li, Y. Song, Y.B. Wu, B.J. Chen, P. Li, Ceram. Int. 42, 1307–1313 (2016)

    Article  Google Scholar 

  7. H.Q. Yu, Y. Qi, Y.B. Wu, J.S. Zhang, B.J. Chen, J. Nanosci. Nanotechno. 16, 3886–3889 (2016)

    Article  Google Scholar 

  8. X. Wu, S.B. Lu, K.W. Kwok, J. Alloy. Compd. 695, 3573–3578 (2017)

    Article  Google Scholar 

  9. M. Wu, X.F. Jiang, E.H. Song, J. Su, Z.T. Chen, W.B. Dai, S. Ye, Q.Y. Zhang, J. Mater. Chem. C 4, 9598–9067 (2016)

    Article  Google Scholar 

  10. P. Du, L.H. Luo, W.P. Li, Q.Y. Yue, J. Appl. Phys. 116, 014102 (2014)

    Article  Google Scholar 

  11. Y.J. Yao, L.H. Luo, W.P. Li, J. Zhou, F.F. Wang, Appl. Phys. Lett. 106, 082906 (2015)

    Article  Google Scholar 

  12. H.Q. Sun, Q.W. Zhang, X.S. Wang, M. Gu, Ceram. Int. 40, 2581 (2014)

    Article  Google Scholar 

  13. F.H. Zhang, J. Li, X.N. Chai, D.P. Liu, X.S. Wang, Y.X. Li, X. Yao, J. Mater. Sci. 27, 7994 (2016)

    Google Scholar 

  14. J. Wu, Z. Wu, W.Q. Qian, Y.M. Jia, Y. Wang, H.S. Luo, Mater. Lett. 184, 131–133 (2016)

    Article  Google Scholar 

  15. D.F. Peng, H. Zou, C.N. Xu, X.S. Wang, X. Yao, J. Lin, T.T. Sun, AIP Adv. 2, 042187 (2012)

    Article  Google Scholar 

  16. H.Q. Yu, Y. Li, Y. Song, Y.B. Wu, X.J. Lan, S.M. Liu, Y.N. Tang, S.S. Xu, B.J. Chen, Sci. Rep. 7, 44099 (2017)

    Article  Google Scholar 

  17. X.Y. Geng, J. Zhang, X.Y. Zhu, B. Hu, B.B. Zhang, Z.P. Gao, T. Zeng, B. Yang, S.T. Zhang, Appl. Phys. Lett. 109, 122901 (2016)

    Article  Google Scholar 

  18. X. Wu, K.W. Kwok, F.L. Li, J. Alloy. Compd. 580, 88–92 (2013)

    Article  Google Scholar 

  19. Q.H. Zuo, L.H. Luo, Y.J. Yao, J. Alloy. Compd. 632, 711–716 (2015)

    Article  Google Scholar 

  20. Q.H. Zuo, L.H. Luo, W.P. Li, F.F. Wang, J. Phys. D: Appl. Phys. 49, 265303 (2016)

    Article  Google Scholar 

  21. F. Gao, G.H. Wu, H. Zhou, D.H. Bao, J. Appl. Phys. 106, 126104 (2009)

    Article  Google Scholar 

  22. D.H. Pinilla, P. Molina, J.L. Plaza, L.E. Bausa, M.O. Ramírez, Opt. Mater. 63, 173–178 (2017)

    Article  Google Scholar 

  23. Z.P. Xu, J. Gong, W.F. Liu, K.Q. Zhang, Q.Z. Lu, Opt. Commun. 292, 135–139 (2013)

    Article  Google Scholar 

  24. Y.N. Qian, R. Wang, B. Wang, B.F. Zhang, S.P. Gao, RSC. Adv. 4, 6652 (2014)

    Article  Google Scholar 

  25. Z.H. Feng, L. Lin, Z.Z. Wang, Z.Q. Zheng, Opt. Commun. 399, 40–44 (2017)

    Article  Google Scholar 

  26. L.L. Noto, S.S. Pitale, M.A. Gusowki, J.J. Terblans, O.M. Ntwaeaborwa, H.C. Swart, Powder Technol. 237, 141–146 (2013)

    Article  Google Scholar 

  27. L. Li, K. Xu, Y.H. Wang, Z.F. Hu, H. Zhao, Opt. Mater. Express 6, 1022–1030 (2016)

    Google Scholar 

  28. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Mater. Lett. 64, 2325–2327 (2010)

    Article  Google Scholar 

  29. J.G. Wu, D.Q. Xiao, W.J. Wu, J.G. Zhu, J. Wang, J. Alloys Compd. 509, 359–361 (2011)

    Article  Google Scholar 

  30. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  31. Y.X. Wei, X.T. Wang, J.J. Jia, X.L. Wang, Ceram. Int. 38, 3499 (2012)

    Article  Google Scholar 

  32. H.R. Li, C.X. Chen, R.K. Zheng, J. Mater. Sci.: Mater. Electron. 26, 3057–3063 (2015)

    Article  Google Scholar 

  33. Q.Y. Yue, L.H. Luo, X.J. Jing, W.P. Li, J. Zhou, J. Alloy. Compd. 610, 276–280 (2014)

    Article  Google Scholar 

  34. Y.H. Han, J.B. Appleby, D.M. Smyth, J. Am. Ceram. Soc. 70, 96–100 (1987)

    Article  Google Scholar 

  35. X.W. Zhang, Y.H. Han, M. Lal, D.M. Smyth, J. Am. Ceram. Soc. 70, 100–103 (1987)

    Article  Google Scholar 

  36. W.J. Merz, Phys. Rev. 77, 52 (1950)

    Article  Google Scholar 

  37. Z.Q. Zhuang, M.P. Harmer, D.M. Smyth, R.E. Newnham, Mater. Res. Bull. 22, 1329 (1987)

    Article  Google Scholar 

  38. P. Victor, R. Ranjith, S.B. Krupanidhi, J. Appl. Phys. 94, 7702 (2003)

    Article  Google Scholar 

  39. L.H. Luo, P. Du, W.P. Li, Q.Y. Yue, J. Appl. Phys. 114, 124104 (2013)

    Article  Google Scholar 

  40. S.J. Butcher, N.W. Thomas, J. Phys. Chem. Solids 52, 595–601 (1991)

    Article  Google Scholar 

  41. M.J. Wu, Y.Q. Lu, Y.X. Li, J. Am. Ceram. Soc. 90, 3642 (2007)

    Article  Google Scholar 

  42. D. Lin, K.W. Kwork, H.L.W. Chan, J. Phys. D: Appl. Phys. 41, 045401 (2008)

    Article  Google Scholar 

  43. W.L. Warren, D. Dimos, B.A. Tuttle, R.D. Nasby, G.E. Pike, Appl. Phys. Lett. 65, 1018 (1994)

    Article  Google Scholar 

  44. H. Zhou, Y.P. Huang, J.M. Yan, L.H. Luo, F.F. Wang, G.L. Yuan, R.K. Zheng, Mater. Lett. 188, 364–367 (2017)

    Article  Google Scholar 

  45. E. Siegel, K.A. Muller, Phys. Rev. B 20, 3587–3596 (1979)

    Article  Google Scholar 

  46. G.Y. Chen, G. Somesfaleam, Y. Liu, Z.G. Zhang, Q. Sun, F.P. Wang, Phys. Rev. B 75, 195204 (2007)

    Article  Google Scholar 

  47. P.V. dos Santos, E.A. Gouveia, M.T. de Araujo, A.S. Gouveia-Neto, A.S.B. Sombra, J. Medeiros, Neto, Appl. Phys. Lett. 74, 3607 (1999)

    Article  Google Scholar 

  48. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Alloy. Compd. 583, 305–308 (2004)

    Article  Google Scholar 

  49. W.Q. Shi, M. Bass, M. Birnbaum, J. Opt. Soc. Am. B 7, 1456–1462 (1990)

    Article  Google Scholar 

  50. Y.N. Qian, R. Wang, C. Xu, W. Wu, X.H. Wu, C.H. Yang, J. Alloy. Compd. 527, 152–156 (2012)

    Article  Google Scholar 

  51. Y.N. Qian, R. Wang, L.L. Xing, Y.L. Xu, C.H. Yang, X.R. Liu, Opt. Mater. 34, 884–888 (2012)

    Article  Google Scholar 

  52. D.M. Gill, L. McCaughan, J.C. Wright, Phys. Rev. B 53, 2334–2344 (1996)

    Article  Google Scholar 

  53. M.P. Hehlen, N.J. Cockroft, T.R. Gosnell, A.J. Bruce, Phys. Rev. B 56, 9302 (1997)

    Article  Google Scholar 

  54. M.D. Shinn, W.A. Sibley, M.G. Drexhage, R.N. Brown, Phys. Rev. B 27, 6635 (1983)

    Article  Google Scholar 

  55. S. Das, A.A. Reddy, S.S. Babu, G.V. Prakash, Mater. Lett. 120, 232–235 (2014)

    Article  Google Scholar 

  56. K. Hardtl, D. Henings, J. Am. Ceram. Soc. 55, 230 (1972)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51572278, 51502129, 11574214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Dong or Ren-Kui Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Yan, JM., Zhang, YY. et al. Large enhancement of upconversion luminescence in Er3+/In3+:Ba0.85Ca0.15TiO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 29, 9007–9015 (2018). https://doi.org/10.1007/s10854-018-8925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8925-3

Navigation