Skip to main content
Log in

Synthesis and study of structural, dielectric, magnetic and magnetoelectric properties of K0.5Na0.5NbO3–CoMn0.2Fe1.8O4 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetoelectric (ME) composites consisting of K0.5Na0.5NbO3 (KNN) as ferroelectric phase and CoMn0.2Fe1.8O4 (CMFO) as ferrite phase with general formula (x) CoMn0.2Fe1.8O4–(1 − x) K0.5Na0.5NbO3 (x = 10, 20, 30, 40 and 50 wt%) were synthesized using solid state reaction method. X-ray diffraction analysis asserts the existence of component phases including spinel phase of CMFO and orthorhombic phase of KNN. Field emission scanning electron microscopy has been used for studying the morphology and calculation of average grain size. The temperature dependent dielectric properties including dielectric constant (\(\varepsilon ^{\prime}\)) and dielectric loss (tan δ) at different frequencies has been studied and both are found to increase with incorporation of CMFO. Magnetic hysteresis loops have been measured at temperatures of 300 and 5 K. Variation of magnetization versus temperature has been studied in field cooled and zero field cooled modes. Polarization versus electric field (P–E) hysteresis loops are obtained at room temperature indicating presence of ferroelectric ordering in the composites at room temperature. The remnant polarization (2Pr) and coercive field (2Ec) are found to decrease linearly with incorporation of CMFO. ME voltage coefficient (αME) has been measured. The maximum value of αME is found to be 5.941 mV/cm-Oe for 10% CMFO–90% KNN bulk composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  2. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  Google Scholar 

  3. C.W. Nan, D.R. Clarke, J. Am. Ceram. Soc. 80, 1333 (1997)

    Article  Google Scholar 

  4. J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)

    Google Scholar 

  5. C.W. Nan, Phys. Rev. B 50, 6082 (1994)

    Article  Google Scholar 

  6. J. Van Boomgard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978)

    Article  Google Scholar 

  7. S.L. Kadam, K.K. Patankar, V.L. Mathe, M.B. Kothale, R.B. Kale, B.K. Chougule, Mater. Chem. Phys. 78, 684 (2003)

    Article  Google Scholar 

  8. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027 (2014)

    Article  Google Scholar 

  9. M. Kumar, K.L. Yadav, J. Phys. Chem. Solids 68, 1791 (2007)

    Article  Google Scholar 

  10. M.J. Miah, M.N.I. Khan, A.K.M. Akhter Hossain, J. Mag. Mag. Mater. 401, 600 (2016)

    Article  Google Scholar 

  11. S.C. Mazumdar, M.N.I. Khan, Md. Fakhrul Islam, A.K.M. Akhter Hossain, J. Mag. Mag. Mater. 401, 443 (2016)

    Article  Google Scholar 

  12. R.W. McCallum, K.W. Dennis, D.C. Jiles, J.E. Snyder, Y.H. Chen, Low Temp. Phys. 27, 266 (2001)

    Article  Google Scholar 

  13. Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, K.W. Dennis, J. Appl. Phys. 99, 08R102 (2006)

    Article  Google Scholar 

  14. J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyder, D.C. Jiles, J. Appl. Phys. 97, 044502 (2005)

    Article  Google Scholar 

  15. D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, J. Phys. D 42, 035411 (2009)

    Article  Google Scholar 

  16. Y.P. Guo, K. Kakimoto, H. Ohsato, App. Phys. Lett. 85, 4121 (2004)

    Article  Google Scholar 

  17. J. Rani, K.L. Yadav, S. Prakash, Appl. Phys. A 108, 761 (2012)

    Article  Google Scholar 

  18. M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaran, Bull. Mater. Sci. 21, 251 (1998)

    Article  Google Scholar 

  19. C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha, K. Ghosh, J. Appl. Phys. 114, 183907 (2013)

    Article  Google Scholar 

  20. J. Rani, P.K. Patel, N. Adhlakha, H. Singh, K.L. Yadav, J. Mater. Sci. Tech. 30, 459 (2014)

    Article  Google Scholar 

  21. B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104, 064123 (2008)

    Article  Google Scholar 

  22. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, J. Yang, J. Mater. Sci. Mater. Electron. 24, 1900 (2012)

    Article  Google Scholar 

  23. B.K. Bammannavar, L.R. Naik, Smart Mater. Struct. 18, 085013 (2009)

    Article  Google Scholar 

  24. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  25. D.C. Agarwal, Asian J. Phys. 6, 108 (1997)

    Google Scholar 

  26. R.A. Islam, S. Priya, J. Mater. Sci. 43, 3560 (2008)

    Article  Google Scholar 

  27. K. Pandey, N. Singh, S.K. Mishra, J. Pure Appl. Phys. 32, 616 (1994)

    Google Scholar 

  28. S.M. Moussa, B.J. Kennedy, B.A. Hunter, C.J. Howard, T. Vogt, J. Phys. Cond. Matter 13, 203 (2001)

    Article  Google Scholar 

  29. S.N. Babu, J.H. Hsu, Y.S. Chen, J.G. Lin, J. Appl. Phys. 107, 09D919 (2010)

    Article  Google Scholar 

  30. R.D. Zysler, D. Fiorani, A.M. Testa, J. Magn. Magn. Mater. 224, 5 (2001)

    Article  Google Scholar 

  31. A. Gupta, R. Chatterjee, J. Appl. Phys. 106, 024110 (2009)

    Article  Google Scholar 

  32. H. Singh, K.L. Yadav, J. Phys. Cond. Matter 23, 385901 (2011)

    Google Scholar 

  33. H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng. B 176, 540 (2011)

    Article  Google Scholar 

  34. B. Tiwari, R.N.P. Chaudhary, J. Alloys Compd. 493, 1 (2010)

    Article  Google Scholar 

  35. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, J. Alloys Compd. 394, 292 (2005)

    Article  Google Scholar 

  36. K. Prasad, L.K. Kumara, K.P. Chandra, K.L. Yadav, S. Sen, Appl. Phys. A 88, 377 (2007)

    Article  Google Scholar 

  37. J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062 (2011)

    Article  Google Scholar 

  38. R. Grossinger, G.V. Duong, R.S. Turtelli, J. Magn. Mag. Mater. 320, 1972 (2008)

    Article  Google Scholar 

  39. R. Rakhikrishna, J. Isaac, J. Philip, J. Electroceram. 35, 120 (2015)

    Article  Google Scholar 

  40. R.C. Kamble, P.A. Shaikh, Y.D. Kolekar, C.H. Bhosale, K.Y. Rajpure, Mater. Lett. 64, 520 (2010)

    Article  Google Scholar 

  41. R. Rakhikrishna, J. Isaac, J. Philip, Ceram. Int. 43, 664 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Author (YK) is thankful to MHRD, Government of India, New Delhi for providing research fellowship. Authors are also thankful to R.K. Kotnala (Chief Scientist), NPL Delhi, for providing magnetoelectric characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Yadav, K.L. Synthesis and study of structural, dielectric, magnetic and magnetoelectric properties of K0.5Na0.5NbO3–CoMn0.2Fe1.8O4 composites. J Mater Sci: Mater Electron 29, 8923–8936 (2018). https://doi.org/10.1007/s10854-018-8911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8911-9

Navigation