Skip to main content
Log in

Effect of nitrogen passivation/pre nitration on interface properties of atomic layer deposited HfO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Properties and quality of thin films depend on the methods used to deposit it. ALD is a surface dependent process and is one of the best deposition techniques because of the control we have on the deposition. In ALD, quality of initial few layers depends on substrate surface. A well prepared substrate surface reduces problem of nucleation. In this work, we have reported nitrogen passivation/pre nitration of silicon wafer as a surface preparation technique for atomic layer deposition. The results obtained have shown that the nitrogen passivation/pre nitration have profound effect on electrical characteristics. Nitrogen passivation has been done at two different temperatures, 350 and 500 °C. Crystal structures and phase information of deposited HfO2 thin films were studied in passivated and non passivated cases using GI-X-ray diffraction, elemental composition was investigated by EDX. Capacitance–voltage (C–V), current–voltage (I–V) and conductance–voltage (G–V) measurements were performed. The density of the interface state charges (Dit) was computed from C–V and G–V characteristics. Leakage current has been reduced almost two fold by utilizing this technique indicating change in properties of deposited oxide and its interface with the substrate. Decrease in interface trap charges has also been observed. Density of interface traps has been decreased from 2.87 × 10−12 to 1.57 × 10−12 cm−2 eV−1. Crystallographic phase of the deposited films are also found different in two different temperatures, 350 and 500 °C of passivation. Crystallographic phase of the deposited films were determined from analysis of measured XRD spectra and are found different in two cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Baccarani, M.R. Wordeman, R.H. Dennard, IEEE Trans. Electron Devices 31(4), 452 (1984)

    Article  Google Scholar 

  2. S. Maurya, S. Shrivastava, J. VLSI Des. Tools Technol. 6(2), 1–4 (2016)

    Google Scholar 

  3. D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243–5275 (2001)

    Article  CAS  Google Scholar 

  4. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004)

    Article  CAS  Google Scholar 

  5. G. Bersuker et al., Grain boundary-driven leakage path formation in HfO2 dielectrics, 2010 Proceedings of the European Solid State Device Research Conference, Sevilla (2010), pp. 333–336. https://doi.org/10.1109/ESSDERC.2010.5618225

  6. H. Yamada, J. Mater. Sci. Lett. 21, 1493 (2002)

    Article  CAS  Google Scholar 

  7. H. Yamada, J. Vac. Sci. Technol. B 20, 1847 (2002)

    Article  CAS  Google Scholar 

  8. S. Maurya, L.C. Tribedi, M. Radhakrishna, Appl. Phys. Lett. 105, 071605 (2014)

    Article  Google Scholar 

  9. S. Maurya, J. Mater. Sci.: Mater. Electron. 28(23), 17442 (2017)

    CAS  Google Scholar 

  10. S. Maurya, J. Mater. Sci.: Mater. Electron. 27(12), 12796 (2016)

    CAS  Google Scholar 

  11. S. Maurya, AIP Conf. Proc. 1731, 120034 (2016)

    Article  Google Scholar 

  12. A. Kahraman, E. Yilmaz, Radiat. Phys. Chem. 139, 114 (2017)

    Article  CAS  Google Scholar 

  13. S. Maurya, AIP Conf. Proc. 1665, 120041 (2015)

    Article  Google Scholar 

  14. J. Choi, S. Kim, J. Kim, H. Kang, H. Jeon, C. Bae, J. Vac. Sci. Technol. A 24, 900 (2006)

    Article  CAS  Google Scholar 

  15. R.J. Carter, E. Cartier, A. Kerber, L. Pantisano, T. Schram, S. De Gendt, M. Heyns, Appl. Phys. Lett. 83, 533–535 (2003)

    Article  CAS  Google Scholar 

  16. H. Wong, V.M.C. Poon, C.W. Kok, P.J. Chan, V.A. Gritsenko, IEEE Trans. Electron Devices 50(9), 1941 (2003)

    Article  CAS  Google Scholar 

  17. H. Wong, H.I. Poon, Microelectron. Eng. 83, 1867 (2006)

    Article  CAS  Google Scholar 

  18. P.D. Kirsch, C.S. Kang, J. Lozano, J.C. Lee, J.G. Ekerdt, J. Appl. Phys. 91, 4353 (2002)

    Article  CAS  Google Scholar 

  19. X.G. Liu, F. Zhu, N. Yamada, D.L. Kwong, IEEE Trans. Electron Devices 51, 1798 (2004)

    Article  Google Scholar 

  20. B. Sen, H. Wong, B.L. Yang, A.P. Huang, P.K. Chu, V. Filip, C.K. Sarkar, Jpn. J. Appl. Phys. 46(5S), 3234 (2007)

    Article  CAS  Google Scholar 

  21. N. Umezawa, K. Shiraishi, T. Ohno, H. Watanabe, T. Chikyow, K. Torii, K. Yamabe, K. Yamada, H. Kitajima, T. Arikado, Appl. Phys. Lett. 86, 143507 (2005)

    Article  Google Scholar 

  22. K. Xiong, J. Robertson, S.J. Clark, J. Appl. Phys. 99, 044105 (2006)

    Article  Google Scholar 

  23. S. Maurya, B.R. Singh, M. Radhakrishna, AIP Conf. Proc. 1536, 1159 (2013)

    Article  CAS  Google Scholar 

  24. S. Maurya, B.R. Singh, M. Radhakrishna, IMPACT: Int. J. Res. Eng. Technol. 2(3), 121 (2014)

    Google Scholar 

  25. S. Maurya, Study of Atomic Layer Deposited HfO2/Si Interfaces for Their Quality, Reliability and Radiation Based Interface Modifications, Ph.D. Dissertation (IIIT-Allahabad, India, 2015)

  26. L. Wang, B. Fan, Z. Wang et al., Mater. Sci. 27(2), 547–550 (2009)

    CAS  Google Scholar 

  27. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 2003)

    Google Scholar 

Download references

Acknowledgements

Author would like to thank Prof. M. Radhakrishna of Indian Institute of Information Technology-Allahabad, India, for his support. Author would also like to thank CEN, IITB under INUP at IITB which have been sponsored by DIT, MCIT, Government of India. MCN for manuscript is IU/R&D/2017-MCN000224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Maurya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S. Effect of nitrogen passivation/pre nitration on interface properties of atomic layer deposited HfO2. J Mater Sci: Mater Electron 29, 7917–7923 (2018). https://doi.org/10.1007/s10854-018-8791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8791-z

Navigation