Skip to main content
Log in

Hydrothermal-microwave synthesis of cobalt oxide incorporated nitrogen-doped graphene composite as an efficient catalyst for oxygen reduction reaction in alkaline medium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction is a fundamental reaction in fuel cells to generate power, for which metal/metal-oxide carbon-based catalyst plays an important role. Herein, we report the hydrothermal-microwave synthesis of cobalt oxide incorporated nitrogen-doped graphene (Co3O4/N-rGO) composite and studied its catalytic potential for oxygen reduction reaction in alkaline medium. An energy dispersive X-ray analysis of Co3O4/N-rGO composite catalyst reveals ~ 3.1 at% nitrogen and ~ 4.3 at% cobalt content. The homogenous distribution of Co3O4 nanoparticles over the layered graphene sheets were observed from representative TEM images. The surface area of the catalyst was found to be significantly high (~ 344 m2/g), which provides surplus active sites for catalytic activity. The electrochemical activity of the synthesized catalysts carried through cyclic voltammetry were found to be in the order of Co3O4/N-rGO > Co3O4/r-GO > N-rGO > RGO. From the linear sweep voltammetry measurement (LSV), a noticeable positive shift in the half-wave potential and an enhanced limiting current is observed for Co3O4/N-rGO composite catalyst with an average electron transfer of 3.8 electrons, which is close to dominant four electron pathway of standard Pt/C catalyst. In addition, the Co3O4/N-rGO catalyst has demonstrated its higher stability in comparison with Pt/C catalyst in alkaline medium via LSV studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.-M. Titirici, J. Mater. Chem. A 4, 2581 (2016)

    Article  Google Scholar 

  2. Y. Qiu, J. Huo, F. Jia, B.H. Shanks, W. Li, J. Mater. Chem. A 4, 83 (2016)

    Article  Google Scholar 

  3. J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, Energy Environ. Sci. 7, 3135 (2014)

    Article  Google Scholar 

  4. R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, J. Mater. Chem. 20, 7114 (2010)

    Article  Google Scholar 

  5. A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, ACS Catal. 5, 4819 (2015)

    Article  Google Scholar 

  6. U.I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser, J.-P. Dodelet, J. Am. Chem. Soc. 136, 978 (2014)

    Article  Google Scholar 

  7. K. Qiu, G. Chai, C. Jiang, M. Ling, J. Tang, Z.X. Guo, ACS Catal. 6, 3558 (2016)

    Article  Google Scholar 

  8. S. Fu, C. Zhu, H. Li, D. Du, Y. Lin, J. Mater. Chem. A 3, 12718 (2015)

    Article  Google Scholar 

  9. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Chem. Mater. 21, 3514 (2009)

    Article  Google Scholar 

  10. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2010)

    Article  Google Scholar 

  11. Y. Wang, J. Yang, S. Zhou, W. Zhang, R. Chuan, J. Mater. Sci. Mater. Electron. 29, 91 (2018)

    Article  Google Scholar 

  12. S. Sen Gupta, T.S. Sreeprasad, S.M. Maliyekkal, S.K. Das, T. Pradeep, ACS Appl. Mater. Interfaces 4, 4156 (2012)

    Article  Google Scholar 

  13. K. Olszowska, J. Pang, P.S. Wrobel, L. Zhao, H.Q. Ta, Z. Liu, B. Trzebicka, A. Bachmatiuk, M.H. Rummeli, Synth. Met. 234, 53 (2017)

    Article  Google Scholar 

  14. M.R. Gandhi, S. Vasudevan, A. Shibayama, M. Yamada, Chem. Select. 1, 4358 (2016)

    Google Scholar 

  15. H.H. Radamson, In Springer handbook of Electronic and photonic materials (Springer, New York, 2017), pp. 1–1

    Book  Google Scholar 

  16. K.H. Lee, J. Oh, J.G. Son, H. Kim, S.-S. Lee, ACS Appl. Mater. Interfaces 6, 6361 (2014)

    Article  Google Scholar 

  17. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015)

    Article  Google Scholar 

  18. S. Jiang, C. Zhu, S. Dong, J. Mater. Chem. A 1, 3593 (2013)

    Article  Google Scholar 

  19. S.-H. Park, S.-M. Bak, K.-H. Kim, J.-P. Jegal, S.-I. Lee, J. Lee, K.-B. Kim, J. Mater. Chem. 21, 680 (2011)

    Article  Google Scholar 

  20. S. Eigler, S. Grimm, F. Hof, A. Hirsch, J. Mater. Chem. A 1, 11559 (2013)

    Article  Google Scholar 

  21. S.G. Peera, A.K. Sahu, A. Arunchander, S.D. Bhat, J. Karthikeyan, P. Murugan, Carbon NY 93, 130 (2015)

    Article  Google Scholar 

  22. M. Fan, Z.-Q. Feng, C. Zhu, X. Chen, C. Chen, J. Yang, D. Sun, J. Mater. Sci. 51, 10323 (2016)

    Article  Google Scholar 

  23. R. Mohammadian, S. Rahmani, M.S.S. Dorraji, I. Hajimiri, J. Mater. Sci. Mater. Electron. 1 (n.d.)

  24. Q. He, Q. Li, S. Khene, X. Ren, F.E. Lo, G. Wu, J. Phys. Chem. C 117, 8697 (2013)

    Article  Google Scholar 

  25. Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, Adv. Funct. Mater. 25, 872 (2015)

    Article  Google Scholar 

  26. A.M. Al-Enizi, M.A. Ghanem, A.A. El-Zatahry, S.S. Al-Deyab, Electrochim. Acta 137, 774 (2014)

    Article  Google Scholar 

  27. Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 134, 9082 (2012)

    Article  Google Scholar 

  28. K. Kumar, C. Cana, J. Rousseau, S. Arrii-clacens, W. Napporn, K.B. Kokoh, J. Phys. Chem. C 120, 7949 (2016)

    Article  Google Scholar 

  29. K. Sardar, S.C. Ball, J.D.B. Sharman, D. Thompsett, J.M. Fisher, R.A.P. Smith, P.K. Biswas, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Mater. 24, 4192 (2012)

    Article  Google Scholar 

  30. Y. Liang, Nat. Mater. 10, 780 (2011)

    Article  Google Scholar 

  31. S. Bag, K. Roy, C.S. Gopinath, C.R. Raj, ACS Appl. Mater. Interfaces 6, 2692 (2014)

    Article  Google Scholar 

  32. R. Tamilselvi, N. Padmanathan, K.M. Rahulan, P.M. Priya, R. Sasikumar, M. Mandhakini, J. Mater. Sci. Mater. Electron. 1–12 (2017). https://doi.org/10.1007/s10854-017-8444-7

  33. Y. Fang, Z. Liu, J. Am. Chem. Soc. 132, 18214 (2010)

    Article  Google Scholar 

  34. S.K. Singh, V.M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces 7, 442 (2015)

    Article  Google Scholar 

  35. Y. Zhao, B. Sun, X. Huang, H. Liu, D. Su, J. Mater. Chem. A Mater. Energy Sustain. 3, 5402 (2015)

    Article  Google Scholar 

  36. A.N. Naveen, P. Manimaran, S. Selladurai, J. Mater. Sci. Mater. Electron. 26, 8988 (2015)

    Article  Google Scholar 

  37. Y. Liang, Y. Li, H. Wang, H. Dai, J. Am. Chem. Soc. 135, 2013 (2013)

    Article  Google Scholar 

  38. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 9, 1752 (2009)

    Article  Google Scholar 

  39. S.-H. Jung, M.-R. Kim, S.-H. Jeong, S.-U. Kim, O.-J. Lee, K.-H. Lee, J.-H. Suh, C.-K. Park, Appl. Phys. A 76, 285 (2003)

    Article  Google Scholar 

  40. R. Lv, T. Cui, M. Jun, Q. Zhang, A. Cao, D.S. Su, Z. Zhang, S. Yoon, J. Miyawaki, I. Mochida, Adv. Funct. Mater. 21, 999 (2011)

    Article  Google Scholar 

  41. A. Ciesielski, P. Samorì, Chem. Soc. Rev. 43, 381 (2014)

    Article  Google Scholar 

  42. S. Maldonado, K.J. Stevenson, J. Phys. Chem. B 109, 4707 (2005)

    Article  Google Scholar 

  43. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  Google Scholar 

  44. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, I. Visoly-Fisher, Sci. Rep. 7, 45030 (2017)

    Article  Google Scholar 

  45. D. Li, D. Shi, Z. Chen, H. Liu, D. Jia, Z. Guo, RSC Adv. 3, 5003 (2013)

    Article  Google Scholar 

  46. N.A. Kumar, H. Nolan, N. McEvoy, E. Rezvani, R.L. Doyle, M.E.G. Lyons, G.S. Duesberg, J. Mater. Chem. A 1, 4431 (2013)

    Article  Google Scholar 

  47. Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, ACS Nano 4, 1790 (2010)

    Article  Google Scholar 

  48. T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, D.-Z. Jia, Sci. Rep. 5, (2015)

  49. C. Fu, C. Song, L. Liu, X. Xie, W. Zhao, Int. J. Electrochem. Sci. 11, 3876 (2016)

    Article  Google Scholar 

  50. Z.J. Han, A.E. Rider, M. Ishaq, S. Kumar, RSC Adv. 5, 92940 (2015)

    Article  Google Scholar 

  51. H. Xiao, Z.-G. Shao, G. Zhang, Y. Gao, W. Lu, B. Yi, Carbon NY 57, 443 (2013)

    Article  Google Scholar 

  52. G. Wu, R. Swaidan, D. Li, N. Li, Electrochim. Acta 53, 7622 (2008)

    Article  Google Scholar 

  53. M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater. 27, 2521 (2015)

    Article  Google Scholar 

  54. D. Higgins, Z. Chen, D.U. Lee, Z. Chen, J. Mater. Chem. A 1, 2639 (2013)

    Article  Google Scholar 

  55. Y. Ma, L. Sun, W. Huang, L. Zhang, J. Zhao, Q. Fan, W. Huang, J. Phys. Chem. C 115, 24592 (2011)

    Article  Google Scholar 

  56. Y.-C. Lin, P.-Y. Teng, C.-H. Yeh, M. Koshino, P.-W. Chiu, K. Suenaga, Nano Lett. 15, 7408 (2015)

    Article  Google Scholar 

  57. M. Zhang, R. Li, X. Chang, C. Xue, X. Gou, J. Power Sources 290, 25 (2015)

    Article  Google Scholar 

  58. T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S. Huang, Y. Chen, ACS Nano 8, 6856 (2014)

    Article  Google Scholar 

  59. S.K. Singh, V.M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces 7, 442 (2014)

    Article  Google Scholar 

  60. J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, ACS Nano 7, 4764 (2013)

    Article  Google Scholar 

  61. P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, G. Cui, Carbon NY 49, 693 (2011)

    Article  Google Scholar 

  62. Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, J. Mater. Chem. 20, 7491 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to CSIR, Madras complex, Chennai for their support in doing electrochemical studies. We are thankful for CIF, Pondicherry University for their support in all other physical characterization. In addition, we acknowledge Dr. Perumal Elumalai, Centre for Green Energy Technology, Pondicherry University, Puducherry for his fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arun Prasath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakar, S., Joshi, D.N., Peera, S.G. et al. Hydrothermal-microwave synthesis of cobalt oxide incorporated nitrogen-doped graphene composite as an efficient catalyst for oxygen reduction reaction in alkaline medium. J Mater Sci: Mater Electron 29, 6750–6762 (2018). https://doi.org/10.1007/s10854-018-8661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8661-8

Navigation