Skip to main content
Log in

Structural, dielectric, and optical properties of the zinc tungstate ZnWO4 compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, thermal, morphological and optical properties of ZnWO4 sample were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy analyses (EDX) and spectroscopic ellipsometry (SE). Electrical properties of the ZnWO4 compound were studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 484–593 K. Temperature dependence of d.c. and a.c. conductivity indicates that electrical conduction in the material is a thermally activated process. The objective of the present work is to investigate the thicknesses and optical constants of ZnWO4 sample prepared by hydrothermal process using SE by new amorphous dispersion formula in the spectral wavelength range of 200–2200 nm. The results of the optical constants were extracted from SE measurements for the ZnWO4 sample experimentally (EXP) and theoretically (FIT), showed an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Grassmann, H.G. Moser, Scintillation properties of ZnWO4. J. Lumin. 33, 109–113 (1985). https://doi.org/10.1016/0022-2313(85)90034-1

    Article  Google Scholar 

  2. S.A.T. Redfern, A.M.T. Bell, C. Michael, B. Henderson, P. Schofield, Rietveld study of the structural phase transition in the sanmartinite (ZnWO4)-cuproscheelite (CuWO4) solid solution. Eur. J. Mineral. 7, 1019–1028 (1995)

    Article  Google Scholar 

  3. F.A. Kröger, Some Aspects of the Luminescence of Solids, vol. 1 (Elsevier, Amsterdam, 1948), p. 24

    Google Scholar 

  4. Y.C. Zhu, J.G. Lu, Y.Y. Shao et al., Measurements of the scintillation properties of ZnWO4 crystals. Nucl. Instrum. Methods A. 244, 579–581 (1986). https://doi.org/10.1016/0168-9002(86)91089-2

    Article  Google Scholar 

  5. B.C. Grabmaier, Crystal scintillators. IEEE Trans. Nucl. Sci. 31, 372–376 (1984). https://doi.org/10.1109/TNS.1984.4333280

    Article  Google Scholar 

  6. P.J. Born, D.S. Robertson, P.W. Smith et al., The preparation and scintillation properties of zinc tungstate single crystals. J. Lumin. 24–25, 131–134 (1981). https://doi.org/10.1016/0022-2313(81)90238-6

    Article  Google Scholar 

  7. T. Oi, K. Takagi, T. Fukazawa, Scintillation study of ZnWO4 single crystals. Appl. Phys. Lett. 36, 278 (1980). https://doi.org/10.1063/1.91452

    Article  Google Scholar 

  8. S.C. Sabharwal, Study of growth imperfections, optical absorption, thermoluminescence and radiation hardness of CdWO4 crystals. J. Cryst. Growth 200, 191–198 (1999). https://doi.org/10.1016/S0022-0248(98)01275-5

    Article  Google Scholar 

  9. J.D. Vergados, The neutrinoless double beta decay from a modern perspective. Phys. Rep. 361, 1–56 (2002). https://doi.org/10.1016/S0370-1573(01)00068-0

    Article  Google Scholar 

  10. Y.G. Zdesenko, Colloquium: the future of double β decay research. Rev. Mod. Phys. 74, 663 (2002). https://doi.org/10.1103/RevModPhys.74.663

    Article  Google Scholar 

  11. S.R. Elliot, P. Vogel, Double beta decay. Ann. Rev. Nucl. Part Sci. 52, 115–151 (2002). https://doi.org/10.1146/annurev.nucl.52.050102.090641

    Article  Google Scholar 

  12. V.I. Tretyak, Y.G. Zdesenko, Tables of double beta decay data. At. Data Nucl. Data Tables 61, 43–90 (1995). https://doi.org/10.1016/S0092-640X(95)90011-X

    Article  Google Scholar 

  13. P. Belli et al., New limits on spin-dependent coupled WIMPs and on 2β processes in 40 Ca and 46 Ca by using low radioactive CaF2 (Eu) crystal scintillators. Nucl. Phys. B 563, 97–106 (1999). https://doi.org/10.1016/S0550-3213(99)00618-5

    Article  Google Scholar 

  14. A.R. Phani, M. Passacantando, L. Lozzi, S. Santucci, Structural characterization of bulk ZnWO4 prepared by solid state method. J. Mater. Sci. 35, 4879–4883 (2000). https://doi.org/10.1023/A:1004809804206

    Article  Google Scholar 

  15. A. Orilukas, A. Dindune, Z. Kanepe, J. Ronis, E. Kazakevicius, A. Kezionis, Synthesis, structure and peculiarities of ionic transport of Li1.6Mg0.3Ti1.7(PO4)3 ceramics. Solid State Ionics 157, 177–181 (2003). https://doi.org/10.1016/S0167-2738(02)00206-0

    Article  Google Scholar 

  16. M.A.L. Nobre, S. Lanfredi, New evidence of grain boundary phenomenon in Zn7Sb2O12 ceramic: an analysis by impedance spectroscopy. Mater. Lett. 50, 322–327 (2001). https://doi.org/10.1016/S0167-577X(01)00247-6

    Article  Google Scholar 

  17. M.A.L. Nobre, S. Landfredi, Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater. Lett. 47, 362–366 (2001). https://doi.org/10.1016/S0167-577X(00)00267-6

    Article  Google Scholar 

  18. V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy. J. Polym. Res. 19, 9838 (2012). https://doi.org/10.1007/s10965-012-9838-0

    Article  Google Scholar 

  19. A. Zaafouri, M. Megdiche, M. Gargouri, Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4P2O7. Ionics 21, 1867–1879 (2015). https://doi.org/10.1007/s11581-015-1365-7

    Article  Google Scholar 

  20. R.B. Said, B. Louati, K. Guidara, S. Kamoun, Thermodynamic properties and application of CBH model in the ac conductivity of LiNi1.5P2O7 ceramic. Ionics 20, 1071–1078 (2014). https://doi.org/10.1007/s11581-013-1060-5

    Article  Google Scholar 

  21. S. Nasri, M. Megdiche, K. Guidara, M. Gargouri, Study of complex impedance spectroscopic properties of the KFeP2O7 compound. Ionics 19, 1921–1931 (2013). https://doi.org/10.1007/s11581-013-0927-9

    Article  Google Scholar 

  22. B. Louati, M. Gargouri, K. Guidara, T. Mhiri, AC electrical properties of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58. Phys. Chem. Solids 66, 762–765 (2005). https://doi.org/10.1016/j.jpcs.2004.09.011

    Article  Google Scholar 

  23. B. Louati, K. Guidara, M. Gargouri, Dielectric and ac ionic conductivity investigations in the monetite. J. Alloy. Compd. 472, 347–351 (2009). https://doi.org/10.1016/j.jallcom.2008.04.050

    Article  Google Scholar 

  24. S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967). https://doi.org/10.1016/0032-3861(67)90021-3

    Article  Google Scholar 

  25. A. Zaafouri, M. Megdiche, M. Gargouri, AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. J. Alloy. Compd. 584, 152–158 (2014). https://doi.org/10.1016/j.jallcom.2013.08.143

    Article  Google Scholar 

  26. K. Saidi, S. Kamoun, H.F. Ayedi, M. Arous, Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n. J. Phys. Chem. Solids 74, 1560–1569 (2013). https://doi.org/10.1016/j.jpcs.2013.05.024

    Article  Google Scholar 

  27. H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999)

    Google Scholar 

  28. M. Rasheed, R. Barillé, Room temperature deposition of ZnO and ZnO:Al ultrathin films on glass and PET substrates by DC sputtering technique. Opt. Quant. Electron. 49, 2–14 (2017) https://doi.org/10.1007/s11082-017-1030-7

    Article  Google Scholar 

  29. P.P. Sahoo, P.A. Maggard, Crystal chemistry, band engineering, and photocatalytic activity of the LiNb3O8–CuNb3O8 solid solution. Inorg. Chem. 52, 4443–4450 (2013). https://doi.org/10.1021/ic302649s

    Article  Google Scholar 

  30. M. Rasheed, R. Barillé, Optical constants of DC sputtering derived ITO, TiO2 and TiO2:Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices. J. Non-Cryst. Solids 476, 1–14 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.04.027

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Nicolas Mercier, Magali Allain for providing the necessary facilities for XRD studies. Also; to Sylvie DABOS SEIGNON from MOLTECH-Anjou for AFM image and to Romain Mallet from SCIAM-Microscopy for SEM, TEM and EDX measurements. We would like to thank Jean-Paul Gaston and Celine Eypert from JobinYvon Horiba Company for the spectroscopic ellipsometry measurements and to Cecile Mézière, Valerie BONNIN for the help with the chemicals and corresponding equipment’s.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Dkhilalli or S. Megdiche Borchani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dkhilalli, F., Borchani, S.M., Rasheed, M. et al. Structural, dielectric, and optical properties of the zinc tungstate ZnWO4 compound. J Mater Sci: Mater Electron 29, 6297–6307 (2018). https://doi.org/10.1007/s10854-018-8609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8609-z

Navigation