Skip to main content
Log in

Preparation of dispersed submicron YAG:Ce3+ phosphors via the molten salt method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor precursor was synthesized using the urea precipitation method, and dispersed submicron YAG:Ce phosphor was prepared using the molten salt method, with fine particle NaCl acting as the salt source. The effects of NaCl particle size on the mixing homogeneity of raw materials, particle morphology, dispersity, and luminescent properties of YAG phosphor were investigated. We found that the mixing homogeneity improved dramatically with a fine (2 µm) NaCl particle. Agglomeration and sintering of the phosphor were significantly reduced, and 200 nm dispersed YAG phosphor can be obtained at 1000 °C. The YAG phosphor obtained with fine NaCl salt also exhibits excellent luminous performance. The YAG phosphor blue light absorption ratio is 38%, and the internal quantum efficiency is 93%. The internal quantum efficiency is superior to YAG phosphors synthesized using commercial large-particle NaCl. These findings provide a new idea for preparing dispersed inorganic powder with fine particle size using the molten salt method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.W. Holloway Jr., M. Kestigian, J. Opt. Soc. Am. (1917–1983) 59, 60–63 (1969)

    Article  CAS  Google Scholar 

  2. X. Su, J. Zhou, G. Bai, J. Zhang, P. Zhao, J. Ceram. Int. 42, 17497–17502 (2016)

    Article  CAS  Google Scholar 

  3. V. Tucureanu, A. Matei, A.M. Avram, J. Opto-Electron. Rev. 23, 239–251 (2015)

    CAS  Google Scholar 

  4. R. Kasuya, T. Isobe, H. Kuma, J. Alloys Compd. 412(2006), 820–823

  5. D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Lu, Z. Ji, J. Euro. Ceram. Soc. 35, 859–869 (2015)

    Article  CAS  Google Scholar 

  6. Y. Zhou, D. Chen, W. Tian, Z. Ji, J. Am. Ceram. Soc. 98, 2445–2450 (2015)

    Article  CAS  Google Scholar 

  7. B.H. King, J.W. Halloran, J. Am. Ceram. Soc. 78, 2141–2148 (1995)

    Article  CAS  Google Scholar 

  8. T.A. Parthasarathy, T.I. Mah, K. Keller, J. Am. Ceram. Soc 75, 1756–1759 (1992)

    Article  CAS  Google Scholar 

  9. S.C. Huang, J.K. Wu, W.J. Hsu, H.H. Chang, H.Y. Hung, Int. J. Appl. Ceram. Technol. 6, 465–469 (2009)

    Article  CAS  Google Scholar 

  10. S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, H. Sarpoolaky, J. Alloys Compd. 456, 282–285 (2008)

    Article  CAS  Google Scholar 

  11. F. Qiu, X. Pu, J. Li, X. Liu, Y. Pan, J. Ceram. Int. 31, 663–665 (2005)

    Article  CAS  Google Scholar 

  12. L. Wang, F. Zhao, M. Zhang, T. Hou, Z. Li, J. Alloys Compd. 661, 148–154 (2016)

    Article  CAS  Google Scholar 

  13. Y. You, L. Qi, X. Li, W. Pan, J. Ceram. Int. 39, 3987–3992 (2013)

    Article  CAS  Google Scholar 

  14. J. Cho, K. Jung, Y.J. Chankang, RSC Adv. 5, 8345–8350 (2015)

    Article  CAS  Google Scholar 

  15. H.L. Sang, H.Y. Koo, M.L. Su, C.K. Yun, J. Ceram. Int. 36, 611–615 (2010)

    Article  Google Scholar 

  16. Xd Zhang, H. Liu, J.Y. Wang, X. Li, W. He, J. Alloys Compd. 372, 300–303 (2004)

    Article  CAS  Google Scholar 

  17. P. Ramanujam, B. Vaidhyanathan, J. Binner, S. Ghanizadeh, C. Spacie, J. Supercrit. Fluids 107, 433–440 (2015)

    Article  Google Scholar 

  18. R. Fazli, M. Fazli, Y. Safaei-Naeini, F. Golestani-Fard, A. Mirhabibi, J. Ceram. Int. 38, 5363–5368 (2012)

    Article  CAS  Google Scholar 

  19. A.R. Kamali, D.J. Fray, J. Ceram. Int. 40, 1835–1841 (2014)

    Article  CAS  Google Scholar 

  20. X. Wang, J.H. Li, Q.R. Shen, P.L. Shi, J. Ceram. Int. 40, 15313–15317 (2014)

    Article  CAS  Google Scholar 

  21. L. Liu, G. Feng, G. Hu, J. Liu, J. Adv. Powder Technol. 25, 219–225 (2014)

    Article  CAS  Google Scholar 

  22. Y. Li, H. Ye, H. Liu, Asian J. Chem. 10, 4491–4494 (2012)

    Google Scholar 

  23. C. Wu, A. Luo, G. Du, X. Qin, W. Shi, J. Mater. Sci. Semicond. Process. 16, 679–685 (2013)

    Article  CAS  Google Scholar 

  24. W. Liu, G. Hu, K. Du, J. Surf. Coat. Int. 216, 267–272 (2013)

    Article  CAS  Google Scholar 

  25. X. Du, S. Zhao, Y. Liu, Z. Peng, Y. Cao, J. Appl. Phys. A 116, 1963–1969 (2014)

    Article  CAS  Google Scholar 

  26. J.L. Wu, G. Gundiah, A.K. Cheetham, J. Chem. Phys. Lett. 441, 250–254 (2007)

    Article  CAS  Google Scholar 

  27. L. Gan, Z.Y. Mao, F.F. Xu, Y.C. Zhu, X.J. Liu, J. Ceram. Int. 40, 5067–5071 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation for Distinguished Young Scholar of the Jiangsu Province (BK20160073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Dong, Y., Shao, Q. et al. Preparation of dispersed submicron YAG:Ce3+ phosphors via the molten salt method. J Mater Sci: Mater Electron 29, 5761–5767 (2018). https://doi.org/10.1007/s10854-018-8547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8547-9

Navigation