Skip to main content
Log in

Influence of sulfonated GO/sulfonated biopolymer as polymer electrolyte membrane for fuel cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene oxide is well known as a advanced functional material because of its super high specific surface area, as well as excellent amphipathicity. Sulfonated graphene oxide bio nanocomposite membranes are presented as a potential proton exchange membrane for fuel cell applications. The GO nanopowder was produced from graphite powder by the modified Hummer’s method and then sulfonated by chlorosulfonic acid as a sulfonic reagent. The s-GO-based s-CS/PEO composite membranes were prepared by solution casting technique. The synthesized electrolytes are studied by different characterization to check the electrical and thermal properties of the membrane. FTIR and Raman showed the formation of GO, s-GO and prepared electrolytes interaction between the functional groups respectively. The maximum ionic conductivity of s-Chitosan (s-CS)/PEO/s-GO nanocomposite membranes at 6 wt% of s-GO in the order of 10−2 S/cm. Moreover, the existence of the intermolecular interactions between sulfonated-CS/PEO and s-GO can improve the thermal stability and interfacial compatibility between nanofiller and polymer matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Bayer, S.R. Bishop, M. Nishihara, K. Sasaki, S.M. Lyth, J. Power Sources, https://doi.org/10.1016/j.jpowsour.2014.08.071. (2014)

    Article  Google Scholar 

  2. Y. Devrim, S. Erkan, N. Bac, I. Eroglu, Int. J. Hydrog. Energy 34, 3467 (2009)

    CAS  Google Scholar 

  3. F. Lufarno, V. Baglio, P. Staiti, A.S. Arilo, V. Antonucci, J. Power Sources 179, 34 (2008)

    Google Scholar 

  4. J. Auimviriyavat, S. Changkhamchom, A. Sirival, Ind. Eng. Chem. Res. 50, 12527 (2011)

    CAS  Google Scholar 

  5. H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu, C.L. Zhu, Y.J. Chen, X.Y. Xue, C.W. Sun, M.S. Cao, J. Mater. Chem. 22, 21679 (2012)

    CAS  Google Scholar 

  6. Y.Q. Zhan, J. Yang, Y.K. Zhou, X.L. Yang, F.B. Meng, X.B. Liu, Mater. Lett. 78, 88 (2012)

    CAS  Google Scholar 

  7. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    CAS  Google Scholar 

  8. L. Jianfeng, K. Sasaki, S.M. Lyth, ECS Trans. 58, 1751 (2013)

    Google Scholar 

  9. H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Z. Anorg. Allg. Chem. 316, 119 (1962)

    CAS  Google Scholar 

  10. T. Bayer, S.R. Bishop, M. Nishihara, K. Sasaki, S.M. Lyth, ECS Trans. 64, 441 (2014)

    CAS  Google Scholar 

  11. S.N. Alam, N. Sharma, L. Kumar, Graphene 6, 1 (2017)

    CAS  Google Scholar 

  12. K. Narasimharao, G.V. Ramana, D. Sreedhar, V. Vasudevarao, J. Mater. Sci. Eng. 5, 6 (2016)

    Google Scholar 

  13. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Proc. Eng. 184, 469, (2017)

    CAS  Google Scholar 

  14. R.D. Daniel, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Google Scholar 

  15. L. Shahriary, A. Anjali Athawale, Int. J. Energy Environ. Eng. 02, 58 (2014)

    Google Scholar 

  16. H. Beydaghi, M. Javanbakht, E. Kowsari, Ind. Eng. Chem. Res. 53, 16621 (2014)

    CAS  Google Scholar 

  17. S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, ACS Appl. Mater. Interfaces 6, 5595 (2014)

    CAS  Google Scholar 

  18. H.Y. Hou, F. Vacandio, M.L.D. Vona, P. Knauth, J. Appl. Polym. Sci. 129, 1151 (2013)

    CAS  Google Scholar 

  19. M.A. Witt, G.M.O. Barra, J.R. Bertolino, A.T.N. Pires, J. Braz. Chem. Soc. 21, 1692 (2010)

    CAS  Google Scholar 

  20. M.L. Verma, H.D. Sahu, Ionics (2017). https://doi.org/10.1007/s1158-017-2063-4

    Article  Google Scholar 

  21. M.J. Reddy, J.S. Kumar, U.V.S. Rao, P.P. Chu, Solid State Ion. 177, 253 (2016)

    Google Scholar 

  22. H.S. Tsai, Y.S. Wang, J.J. Lin, W.F. Lien, J. Appl. Polym. Sci. 116, 1686 (2010)

    CAS  Google Scholar 

  23. A. Yu, I. Roes, A. Davies, Z. Chen, Appl. Phys. Lett. 96, 253105 (2010)

    Google Scholar 

  24. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Proc. Eng. 184, 469 (2007)

    Google Scholar 

  25. H.C. Chien, L.D. Tsai, C.D. Huang, C.Y. Kang, J.N. Lin, F.C. Chang, Int. J. Hydrog. Energy 38, 13792 (2013)

    CAS  Google Scholar 

  26. L. Zhou, H. Gu, C. Wang, J. Zhang, M. Lv, R. He, Colloids Surf. A 430, 103 (2013)

    CAS  Google Scholar 

  27. J.H. Jang, V.H. Pham, S.H. Hur, J.S. Chung, J. Colloid Interface Sci. 424, 62 (2014)

    CAS  Google Scholar 

  28. S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 9696 (2012)

    CAS  Google Scholar 

  29. A. Dideykin, A.E. Aleksenskiy, D. Kirilenko, P. Brunkor, V. Goncharov, M. Baidakova, D. Sakseev, A.Y. Vul, Diam. Relat. Mater. 20, 105 (2011)

    CAS  Google Scholar 

  30. H. Guo, X. Wang, Q. Qian, F. Wang, X. Xia, ACS Nano 3, 2653 (2009)

    CAS  Google Scholar 

  31. C.Y. Tseng, Y.S. Ye, K.Y. Kao, J. Joseph, W.C. Shen, J. Rick, B.J. Hwang, J. Hydrog. Energy 36, 11936 (2011)

    CAS  Google Scholar 

  32. P.S. Rao, S. Sridhar, M.Y. Wey, A. Krishnaiah, Ind. Eng. Chem. Res. 46, 2155 (2007)

    CAS  Google Scholar 

  33. D.C. Lee, H.N. Yang, S.H. Park, W.H. Kim, J. Membr. Sci. 452, 20 (2014)

    CAS  Google Scholar 

  34. E. Raphael, C.O. Avellaneda, B. Manzolli, A. Pawlicka, Electrochem. Acta 55, 1455 (2010)

    CAS  Google Scholar 

  35. D. Dikin, S. Stankovich, E. Zimney, R. Piner, G. Dommet, G. Evmenenko, S. Nguyen, R. Ruoff, Nature 448, 457 (2007)

    CAS  Google Scholar 

  36. Y. Heo, H. Im, J. Kim, J. Membr. Sci. 425–426, 11 (2013)

    Google Scholar 

  37. S. Miao, H. Zhang, X. Li, Y. Wu, J. Hydrog. Energy 41, 331 (2016)

    CAS  Google Scholar 

  38. R. Kumar, M. Mamlouk, K. Scott, RSC Adv. 4, 617 (2014)

    CAS  Google Scholar 

  39. M. Vinothkannan, R. Kannan, A.R. Kim, G.G. Kumar, K.S. Nahm, D.J. Yoo, Colloid Polym. Sci. 294, 1197 (2016)

    CAS  Google Scholar 

  40. J. Maier, Solid State Ion. 175, 7 (2004)

    CAS  Google Scholar 

  41. L. Unnikrishna, P. Madamana, S. Mohanty, S.K. Nayak, Polym. Plast. Technol. Eng. 51, 568 (2012)

    Google Scholar 

  42. K. Feng, B.B. Tang, P.Y. Wu, ACS Appl. Mater. Interfaces 5, 13042 (2013)

    CAS  Google Scholar 

  43. A.M. Affoune, A. Yamada, M. Umeda, J. Power Sources 148, 9 (2005)

    CAS  Google Scholar 

  44. S. Miao, H. Zhang, X. Li, Y. Wu, Int. J. Hydrog. Energy 41, 331 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh Prabhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiselvimary, J., Prabhu, M.R. Influence of sulfonated GO/sulfonated biopolymer as polymer electrolyte membrane for fuel cell application. J Mater Sci: Mater Electron 29, 5525–5535 (2018). https://doi.org/10.1007/s10854-018-8521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8521-6

Navigation