Skip to main content
Log in

Effect of the occupation of Ba and Ti sites on the structural, optical and dielectric properties of Sm-doped BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sm-doped BaTiO3 powders have been synthesized with the help of the sol gel process. X-ray diffraction (XRD) patterns of the obtained powders, heat treated at a relatively low temperature (750 °C/3 h), revealed their crystallization in the pure perovskite structure without the presence of secondary phases. The occupation of the Ba and Ti sites by Sm in the BaTiO3 lattice and the evolution of the crystalline parameters as functions of the dopant content have been discussed based on XRD and Raman results. Dielectric measurements performed on the samples revealed a strong increasing diffuse character of the ferro-to-paraelectric phase transition with increasing Sm content. Moreover, the behavior of the permittivity as a function of frequency indicates that the samples are approaching their resonance frequency. The study of the conductivity showed the existence of a weak positive temperature coefficient of resistivity (PTCR) effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Article  Google Scholar 

  2. Z. Chao, W. Chun-Lei, L. Ji-Chao, Y. Kun, Chin. Phys. 16(5), 1422–1428 (2007)

    Article  Google Scholar 

  3. L.H. Parker, A.F. Tasch, IEEE Circuits Devices Mag. 6, 17–26 (1990)

    Article  Google Scholar 

  4. T. Kawaguchi, H. Adachi, K. Setsune, O.Y. Amazaki, K. Wasa, Appl. Opt. 23, 2187–2191 (1984)

    Article  Google Scholar 

  5. L.A. Thomas, Ferroelectrics 3, 231–238 (1972)

    Article  Google Scholar 

  6. D.Y. Lu, Y. Yue, X.Y. Sun, J. Alloys Compd. 586, 136–141 (2014)

    Article  Google Scholar 

  7. M.H. Lin, H.Y. Lu, Mater. Sci. Eng. A 335, 101 (2002)

    Article  Google Scholar 

  8. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999)

    Article  Google Scholar 

  9. M.F. Yan, Mater. Sci. Eng. 48, 53 (1981)

    Article  Google Scholar 

  10. M.H. Lin, J.F. Chou, H.Y. Lu, J. Am. Ceram. Soc. 83, 2155 (2000)

    Article  Google Scholar 

  11. E. Brzozowski, M.S. Castro, C.R. Foschini, B. Stojanovic, Ceram. Int. 28, 773 (2002)

    Article  Google Scholar 

  12. Y. Hao, Y. Li, X. Yao, X. Wang, Ferroelectrics 407, 146–153 (2010)

    Article  Google Scholar 

  13. S. Lee, C.A. Randall, Appl. Phys. Lett. 92, 111904 (2008)

    Article  Google Scholar 

  14. Y. Tsur, C.A. Randall, Jpn. J. Appl. Phys. 40, 255–258 (2001)

    Article  Google Scholar 

  15. I. Sakaguchi, T. Furuta, S. Hirose, K. Watanabe, K. Kageyama, S. Hishita, H. Haneda, N. Ohashi, Key Eng. Mater. 582, 189–193 (2013)

    Article  Google Scholar 

  16. W. Cai, C. Fu, J. Gao, X. Deng, G. Chen, Z. Lin, Integr. Ferroelectr. 140, 92–103 (2012)

    Article  Google Scholar 

  17. Y. Hao, Y. Lin, X. Yao, X. Wang, Ferroelectrics 407, 146–153 (2010)

    Article  Google Scholar 

  18. J. Park, Y.H. Han, Metal Mater. Int. 20(6), 1157–1161 (2014)

    Article  Google Scholar 

  19. H. Sun, X. Wang, X. Yao, Ferroelectrics 404, 99–104 (2010)

    Article  Google Scholar 

  20. M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, Phys. B 411, 26–34 (2013)

    Article  Google Scholar 

  21. M.M.V. Petrovic, R. Grigalaitis, N. Ilic, J.D. Bobic, A. Dzunuzovic, J. Banys, B.D. Stojanovic, J. Alloys Compd. 724, 959–968 (2017)

    Article  Google Scholar 

  22. A. Salhi, S. Sayouri, B. Jaber, L. Omari, Appl. Phys. A124, 389 (2018)

    Article  Google Scholar 

  23. G. Burns, Phy. Rev. B 10, 1951 (1974)

    Article  Google Scholar 

  24. M.C. Chang, S.C. Yu, J. Mater. Sci. Lett. 19, 1323–1325 (2000)

    Article  Google Scholar 

  25. U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)

    Article  Google Scholar 

  26. R. Farhi, M. El Marssi, A. Simon, J. Ravez, Eur. Phys. J. B 18, 605–610 (2000)

    Article  Google Scholar 

  27. D.-Y. Lu, X.-Y. Sun, M. Toda, J. Phys. Chem. Solids 68, 650–664 (2007)

    Article  Google Scholar 

  28. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 32, 147–149 (2001)

    Article  Google Scholar 

  29. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 32, 69–71 (2001)

    Article  Google Scholar 

  30. V.M. Longo, A.T. Figueiredo, S. De Lazaro, M.F. Gurgel, M.G.S. Costa, C.O. Paivasantos, J.A. Varela, E. Longo, V. Mastelaro, R.F.S. De Vicente, A.C. Hernandes, R.W.A. Franco, J. Appl. Phys. 104, 023515 (2008)

    Article  Google Scholar 

  31. V. Paunovic, L. Zivkovic, V. Mitic, Sci. Sinter. 42, 69–79 (2010)

    Article  Google Scholar 

  32. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55–61 (1982)

    Article  Google Scholar 

  33. D. Fu, S. Hao, L. Qiang, J. Mater. Sci.: Mater. Electron. 24, 1208–1212 (2013)

    Google Scholar 

  34. F. Wang, S. Hao, J. Li, J. Wang, Y. Gao, Y. Shen, S. Wang, J. Mater. Sci.: Mater. Electron. 25(8), 3543–3551 (2014)

    Google Scholar 

  35. A. Salhi, S. Sayouri, L. Hajji, T. Lamcharfi, J. Ceram. Process. Res. 17, 1–7 (2016)

    Google Scholar 

  36. M. Rao, K. Ramesh, M. Ramesh, B. Rao, Adv. Mater. Phys. Chem. 3, 77–82 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salaheddine Sayouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es-saddik, F., Limame, K., Sayouri, S. et al. Effect of the occupation of Ba and Ti sites on the structural, optical and dielectric properties of Sm-doped BaTiO3 ceramics. J Mater Sci: Mater Electron 30, 1821–1831 (2019). https://doi.org/10.1007/s10854-018-0454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0454-6

Navigation