Skip to main content

Advertisement

Log in

Porous nitrogen and oxygen co-doped carbon microtubes derived from plane tree fruit fluff for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porous nitrogen and oxygen co-doped carbon microtubes (PCMTs) were prepared via carbonization followed by activation of plane tree fruit fluffs (PTFFs) and employed as high-performance supercapacitor electrode materials. The pore structures, surface chemistry and degree of graphitization of the final products can be facilely tailored by adjusting the activation temperature, which changed remarkably as the activation temperature increased from 650 to 900 °C. The PCMT-850 obtained by activating at 850 °C possessed despite the second largest specific surface area (1533 m2/g), but the highest mesopore ratio (9.13%), the maximal nitrogen content (2.20 at.%) and highest degree of graphitization as well as excellent electrical conductivity. The PCMT-850-based carbon electrode exhibited the highest charge storage capacity with a specific capacitance of 257.6 F/g at a current of 1 A/g and the lowest internal resistance in 6 M KOH. The high supercapacitor performance can be attributed to the combined effects of its pore structure, heteroatom doping effects and degree of crystallinity. The favorable capacitive performance render the waste biomass PTFFs serve as novel resources of nitrogen and oxygen co-doped carbon materials for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772–799 (2018)

    Article  Google Scholar 

  2. P. Xu, W. Zeng, S. Luo, C. Ling, J. Xiao, A. Zhou, Y. Sun, K. Liao, 3D Ni-Co selenide nanorod array grown on carbon fiber paper: towards high-performance flexible supercapacitor electrode with new energy storage mechanism. Electrochim. Acta 241, 41–49 (2017)

    Article  Google Scholar 

  3. Y. Sun, Z. Fang, C. Wang, K.R.R.M. Ariyawansha, A. Zhou, H. Duan, Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale. 7, 7790–7801 (2015)

    Article  Google Scholar 

  4. H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano11, 4475–4482 (2017)

    Article  Google Scholar 

  5. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)

    Article  Google Scholar 

  6. N. Cai, J. Fu, H. Zeng, X. Luo, C. Han, F. Yu, Reduced graphene oxide-silver nanoparticles/nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitor application. J. Alloys Compd. 742, 769–779 (2018)

    Article  Google Scholar 

  7. X. Jiang, Z. Wang, Q. Deng, F. Zhang, F. You, C. Yao, Zinc-doped nickel oxide hollow microspheres—preparation hydrothermal synthesis and electrochemical properties. Eur. J. Inorg. Chem. 39, 4345–4348 (2018)

    Article  Google Scholar 

  8. J.G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 74, 51–124 (2015)

    Article  Google Scholar 

  9. J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@Polypyrrole Core–Shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces 10, 18816–18823 (2018)

    Article  Google Scholar 

  10. X. Li, Y. Liu, W. Guo, J. Chen, W. He, F. Peng, Synthesis of spherical PANI particles via chemical polymerization in ionic liquid for high-performance supercapacitors. Electrochim. Acta 135, 550–557 (2014)

    Article  Google Scholar 

  11. J.G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017)

    Article  Google Scholar 

  12. Q. Wang, M. Zhou, Y. Zhang, M. Liu, W. Xiong, S. Liu, Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors. J. Mater. Sci. Mater. Electr. 29, 4294–4300 (2018)

    Article  Google Scholar 

  13. Z. Liu, Z. Zhou, W. Xiong, Q. Zhang, Controlled synthesis of carbon nanospheres via the modulation of the hydrophilic length of the assembled surfactant micelles. Langmuir 34, 10389–10396 (2018)

    Article  Google Scholar 

  14. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)

    Article  Google Scholar 

  15. L. Hu, Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5, 6423 (2012)

    Article  Google Scholar 

  16. W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon. 49, 838–843 (2011)

    Article  Google Scholar 

  17. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters 11, 2472–2477 (2011)

    Article  Google Scholar 

  18. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)

    Article  Google Scholar 

  19. Q. Guan, W. Xiong, L. Zhou, S. Liu, Facile synthesis of nitrogen-doped porous carbon-gold hybrid nanocomposite for mercury(II) ion electrochemical determination. Electroanalysis 28, 133–139 (2016)

    Article  Google Scholar 

  20. D.H. Chenglong Li, Z.H. Huang, M.X. Wang, Hierarchical micro-/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor. J. Electrochem. Soc. 165, A3334–A3341 (2018)

    Article  Google Scholar 

  21. J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5, 2411–2428 (2016)

    Article  Google Scholar 

  22. G.Y. Xu, J.P. Han, D. Bing, N. Ping, P. Jin, D. Hui, H.S. Li, X.G. Zhang, Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015)

    Article  Google Scholar 

  23. J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4, 3750–3756 (2016)

    Article  Google Scholar 

  24. L. Xie, G. Sun, F. Su, X. Guo, Q.Q. Kong, X.M. Li, X. Huang, L. Wan, W. Song, K. Li, Hierarchical porous carbon microtubes derived from Willow Catkins for supercapacitor application. J. Mater. Chem. A 4, 1637–1646 (2015)

    Article  Google Scholar 

  25. X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7, 6136 (2015)

    Article  Google Scholar 

  26. O. Hamdaoui, F. Saoudi, M. Chiha, E. Naffrechoux, Sorption of malachite green by a novel sorbent, dead leaves of plane tree: equilibrium and kinetic modeling. Chem. Eng. J. 143, 73–84 (2008)

    Article  Google Scholar 

  27. Y. Zhang, X. Liu, S. Wang, S.X. Dou, L. Li, Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J. Mater. Chem. A 4, 10869–10877 (2016)

    Google Scholar 

  28. B.V. Kaludjerović, V.M. Jovanović, S.I. Stevanović, ŽD. Bogdanov, Characterization of nanoporous carbon fibrous materials obtained by chemical activation of plane tree seed under ultrasonic irradiation. Ultrason. Sonochem. 21, 782 (2014)

    Article  Google Scholar 

  29. H. Tan, X. Wang, D. Jia, P. Hao, Y. Sang, H. Liu, Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J. Mater. Chem. A 5, 2580–2591 (2017)

    Article  Google Scholar 

  30. X. Zhao, Q. Zhang, C.M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlögl, D.S. Su, Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1, 624–630 (2012)

    Article  Google Scholar 

  31. F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011)

    Article  Google Scholar 

  32. J. Rouquerol, P. Llewellyn, F. Rouquerol, Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 160, 49–56 (2007)

    Article  Google Scholar 

  33. A.K. Ladavos, A.P. Katsoulidis, A. Iosifidis, K.S. Triantafyllidis, T.J. Pinnavaia, P.J. Pomonis, The BET equation, the inflection points of N 2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous Mesoporous Mater. 151, 126–133 (2012)

    Article  Google Scholar 

  34. ISO 9277, Determination of the specific surface area of solids by gas adsorption—BET method, 2nd ed. 2012 of ISO 9277. ISO. (2010)

  35. A.V. Neimark, Y. Lin, P.I. Ravikovitch, M. Thommes, Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)

    Article  Google Scholar 

  36. A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 50, 2799–2805 (2005)

    Article  Google Scholar 

  37. M. East, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87, 1051–1069 (2015)

    Google Scholar 

  38. J. Yin, D. Zhang, J. Zhao, X. Wang, H. Zhu, C. Wang, Meso- and micro-porous composite carbons derived from humic acid for supercapacitors. Electrochim. Acta 136, 504–512 (2014)

    Article  Google Scholar 

  39. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7, 379–386 (2013)

    Article  Google Scholar 

  40. L.G. Cancado, K. Takai, T. Enoki, M. Endo, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106–163106 (2006)

    Article  Google Scholar 

  41. J.M. Vallerot, X. Bourrat, A. Mouchon, G. Chollon, Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon 44, 1833–1844 (2006)

    Article  Google Scholar 

  42. W.S. Bacsa, J.S. Lannin, D.L. Pappas, J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon. Phys. Rev. B 47, 10931–10934 (1993)

    Article  Google Scholar 

  43. H. Ishida, H. Fukuda, G. Katagiri, A. Ishitani, An Application of surface-enhanced raman scattering to the surface characterization of carbon materials. Appl. Spectrosc. 40, 322–329 (1986)

    Article  Google Scholar 

  44. T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995)

    Article  Google Scholar 

  45. W. Kai, Z. Ning, S. Lei, Y. Rui, X. Tian, J. Wang, S. Yan, D. Xu, Q. Guo, L. Lang, Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 166, 1–11 (2015)

    Article  Google Scholar 

  46. H. Peng, G. Ma, K. Sun, J. Mu, X. Zhou, Z. Lei, A novel fabrication of nitrogen-containing carbon nanospheres with high rate capability as electrode materials for supercapacitors. RSC Adv. 5, 12034–12042 (2015)

    Article  Google Scholar 

  47. Y. Zhang, Y. Wang, Y. Meng, G. Tan, Y. Guo, D. Xiao, Porous nitrogen-doped carbon tubes derived from reed catkins as a high-performance anode for lithium ion batteries. RSC Adv. 6, 98434–98439 (2016)

    Article  Google Scholar 

  48. U. Zielke, K. Hüttinger, W. Hoffman, Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 34, 983–998 (1996)

    Article  Google Scholar 

  49. L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)

    Article  Google Scholar 

  50. L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, X. Huang, L. Wan, K. Li, C. Lv, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4, 1637–1646 (2016)

    Article  Google Scholar 

  51. B. Xu, S. Hou, G. Cao, F. Wu, Y. Yang, Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 22, 19088 (2012)

    Article  Google Scholar 

  52. C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Beguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv. Funct. Mater. 17, 1828–1836 (2007)

    Article  Google Scholar 

  53. P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao, Y.H. Qian, S.H. Yu, Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy. 2, 249–256 (2013)

    Article  Google Scholar 

  54. M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46, 1475–1488 (2008)

    Article  Google Scholar 

  55. M. Liu, L. Gan, W. Xiong, F. Zhao, X. Fan, D. Zhu, Z. Xu, Z. Hao, L. Chen, Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors. Energy Fuels 27, 1168–1173 (2013)

    Article  Google Scholar 

  56. J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)

    Article  Google Scholar 

  57. J.G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, e1703950 (2018)

    Article  Google Scholar 

  58. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, J. Huang, J. Yang, D. Zhao, Z. Jiang, Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 9, 569–573 (2007)

    Article  Google Scholar 

  59. M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249 (2013)

    Article  Google Scholar 

  60. J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, L. Jiang, Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci. Rep. 4, 5545 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fund of Key Laboratory for Advanced Material of Ministry of Education (No. 2017AML13), China, Science and Technology Project Founded by the Education Department of Hubei Province No. B2017052 and Graduate Education & Innovation Fund in Wuhan Institute of Technology (No. CX2017084), Wuhan, Hubei Province, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Huang, ZH. & Wang, MX. Porous nitrogen and oxygen co-doped carbon microtubes derived from plane tree fruit fluff for high-performance supercapacitors. J Mater Sci: Mater Electron 30, 1468–1479 (2019). https://doi.org/10.1007/s10854-018-0416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0416-z

Navigation