Skip to main content
Log in

Eu3+-doped Sr2(Al1−xMgx)(Al1−xSi1+x)O7 phosphors: electronic, crystal structures and photoluminescence properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The union of chemical compositions substitution and spectral controlling is of importance for the discovery of new materials or the implementation of properties optimization. In this work, we employed an effective strategy to regulate crystal structures by chemical unit co-substitution. We applied this strategy to Eu3+-doped Sr2(Al1−xMgx)(Al1−xSi1+x)O7 (0 ≤ x ≤ 1) solid solution phosphor, which was successfully synthesized by high temperature solid state reaction. The crystal structure remained the same group, P-421m, with controlling chemical compositions. The excitation peaks shifted between 263 and 270 nm and emission peaks shifted between 612 and 614 nm with a decreasing Stocks shift in overall tendency. The shift trend was clarified by Crystal Field Theory. The energy band structure and density of states of Sr2Al2SiO7 and Sr2MgSi2O7 were calculated by Density Functional Theory using the generalized gradient approximation. The band gap was also analyzed by diffuse reflectance spectrum as a contrast. The morphology was characterized by field emission scanning electron microscopy. Furthermore, the photoluminescence color of phosphors could be tuned from yellow to orange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Zhang, Y.T. Tsai, M.H. Fang et al., Aluminate Red phosphor in light-emitting diodes: theoretical calculations, charge varieties, and high-pressure luminescence analysis. ACS Appl. Mater. Interfaces. 9(28), 23995–24004 (2017)

    Article  Google Scholar 

  2. C.C. Lin, Y.T. Tsai, H.E. Johnston et al., Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors. J. Am. Chem. Soc. 139(34), 11766–11770 (2017)

    Article  Google Scholar 

  3. L.M.W. Leggett, D.A. Ball, The implication for climate change and peak fossil fuel of the continuation of the current trend in wind and solar energy production. Energy Policy 41, 610–617 (2012)

    Article  Google Scholar 

  4. W. Liu, Y. Fang, G.Z. Wei et al., A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 137(29), 9400–9408 (2015)

    Article  Google Scholar 

  5. X. Liu, W. Xie, Y. Lü et al., Multichannel luminescence properties of mixed-valent Eu2+/Eu3+ coactivated SrAl3BO7 nanocrystalline phosphors for near-UV LEDs. Inorg. Chem. 56(22), 13829–13841 (2017)

    Article  Google Scholar 

  6. S.A. Khan, H. Zhong, W. Ji et al., Single-phase white light-emitting CaxBa(9–x)Lu2Si6O24:Eu2+/Mn2+ phosphors. ACS Omega 2(9), 6270–6277 (2017)

    Article  Google Scholar 

  7. T. Nakajima, H. Hanawa, T. Tsuchiya, Plant habitat-conscious white light-emitting devices: Dy3+-emission considerably reduces involvement in photosynthesis. J. Mater. Chem. C 3(14), 3371–3378 (2015)

    Article  Google Scholar 

  8. D. Wen, H. Kuwahara, H. Kato et al., Anomalous orange light-emitting (Sr, Ba)2SiO4:Eu2+ phosphors for warm white LEDs. ACS Appl. Mater. Interfaces. 8(18), 11615–11620 (2016)

    Article  Google Scholar 

  9. S.A. Bhagat, S.V. Borghate, N.T. Kalyani et al., Novel Na+ doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays. Luminescence 30(3), 251–256 (2015)

    Article  Google Scholar 

  10. S. Arunkumar, G. Venkataiah, K. Marimuthu, Spectroscopic and energy transfer behavior of Dy3+ ions in B2O3-TeO2-PbO-PbF2-Bi2O3-CdO glasses for laser and WLED applications. Spectrochim. Acta A. 136, 1684–1697 (2015)

    Article  Google Scholar 

  11. R. Dey, V.K. Rai, Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices. Dalton Trans. 43(1), 111–118 (2014)

    Article  Google Scholar 

  12. M. Chen, Z. Xia, M.S. Molokeev et al., Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2–(1–x)Ca10Li(PO4)7: Eu2+ phosphors. Chem. Mater. 29(3), 1430–1438 (2017)

    Article  Google Scholar 

  13. G. Li, Y. Tian, Y. Zhao et al., Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44(23), 8688–8713 (2015)

    Article  Google Scholar 

  14. N. Hirosaki, T. Takeda, S. Funahashi et al., Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach. Chem. Mater. 26(14), 4280–4288 (2014)

    Article  Google Scholar 

  15. Z. Xia, S. Miao, M.S. Molokeev et al., Structure and luminescence properties of Eu2+ doped LuxSr2–xSiNxO4–x phosphors evolved from chemical unit cosubstitution. J. Mater. Chem. C 4(6), 1336–1344 (2016)

    Article  Google Scholar 

  16. S. Katyayan, S. Agrawal, Facile molten salt synthesis, structural, morphological and optical studies of ASiO3: Eu2+, Er3+(A=Ca, Ba, Sr) perovskites. J. Mater. Sci. Mater. Electron. 29(19), 16609–16629 (2018)

    Article  Google Scholar 

  17. T. Endo, Y. Doi, M. Wakeshima et al., Crystal structures and magnetic properties of new europium melilites Eu2MSi2O7 (M=Mg, Mn) and their strontium analogues. Inorg. Chem. 49(23), 10809–10814 (2010)

    Article  Google Scholar 

  18. E. Finley, A. Cobb, A. Duke et al., Optimizing blue persistent luminescence in (Sr1–δBaδ)2MgSi2O7:Eu2+, Dy3+ via solid solution for use in point-of-care diagnostics. ACS Appl. Mater. Interfaces. 8(40), 26956–26963 (2016)

    Article  Google Scholar 

  19. D. Singh, S. Sheoran, V. Tanwar, Europium doped silicate phosphors: synthetic and characterization techniques. Adv. Mater. Lett. 8, 656–672 (2017)

    Article  Google Scholar 

  20. X. Wang, Z. Zhao, Q. Wu et al., A garnet-based Ca2YZr2Al3O12: Eu3+ red-emitting phosphor for n-UV light emitting diodes and field emission displays: electronic structure and luminescence properties. Inorg. Chem. 55(21), 11072–11077 (2016)

    Article  Google Scholar 

  21. D.L. Wood, J.S. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144 (1972)

    Article  Google Scholar 

  22. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Física 53(5), 18–22 (2007)

    Google Scholar 

  23. I.P. Sahu, D.P. Bisen, N. Brahme et al., Luminescent properties of R+ doped Sr2MgSi2O7: Eu3+ (R+=Li+, Na+ and K+) orange-red emitting phosphors. J. Mater. Sci.: Mater. Electron. 27(7), 6721–6734 (2016)

    Google Scholar 

  24. M. Chang, H. Hu, Y. Zhang et al., Core-shell-core heterostructural engineering of Y2O3: Eu3+/MCM-41/YVO4:Eu3+ for enhanced red emission and tunable, broadened-band response to excitation. J. Mater. Sci.: Mater. Electron. 28(21), 16026–16035 (2017)

    Google Scholar 

  25. D. Singh, V. Tanwar, A.P. Simantilleke et al., Synthesis and enhanced luminescent characterization of SrAl4O7:Eu2+, RE3+(RE=Nd, Dy) nanophosphors for light emitting applications. J. Mater. Sci.: Mater. Electron. 27(5), 5303–5308 (2016)

    Google Scholar 

  26. N. Yamashita, Luminescence centers of Ca(S:Se) phosphors activated with impurity ions having s2 configuration. I. Ca (S:Se):Sb3+ phosphors. J. Phys. Soc. Jpn. 35, 1089 (1973)

    Article  Google Scholar 

  27. D. Singh, S. Sheoran, V. Tanwar et al., Optical characteristics of Eu(III) doped MSiO3 (M=Mg, Ca, Sr and Ba) nanomaterials for white light emitting applications. J. Mater. Sci.: Mater. Electron. 28(4), 3243–3253 (2017)

    Google Scholar 

  28. Q. Zhang, X. Wang, X. Ding et al., A potential red-emitting phosphor BaZrGe3O9:Eu3+ for WLED and FED applications: synthesis, structure, and luminescence properties. Inorg. Chem. 56(12), 6990–6998 (2017)

    Article  Google Scholar 

  29. D. Singh, V. Tanwar, A.P. Samantilleke et al., Synthesis of Sr(1–xy)Al4O7: Eux 2+, Lny 3+(Ln=Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristics. Electron. Mater. Lett. 13(3), 222–229 (2017)

    Article  Google Scholar 

  30. D. Singh, V. Tanwar, A.P. Simantilke et al. Rapid synthesis and photoluminescent characterization of MAl2O4:Eu2+, Dy3+ (M=Ca/Ca+ Ba/Ca+ Mg) blue nanophosphors for white lighting display applications, Adv. Mater. Lett. 7(1), 47–53 (2016)

    Article  Google Scholar 

  31. J. Zhong, D. Chen, W. Zhao et al., Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes. J. Mater. Chem. C 3(17), 4500–4510 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao Chen or Yongqian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, X., Wang, B. et al. Eu3+-doped Sr2(Al1−xMgx)(Al1−xSi1+x)O7 phosphors: electronic, crystal structures and photoluminescence properties. J Mater Sci: Mater Electron 30, 1246–1254 (2019). https://doi.org/10.1007/s10854-018-0392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0392-3

Navigation