Skip to main content
Log in

Effect of aging temperature on microstructure and mechanical properties of Sn–9Zn–xZrC solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of aging temperature on microstructure and mechanical properties of Sn–9Zn–xZrC (x = 0, 0.06) solder joints was investigated. The results showed that the wettability of Sn–9Zn based alloys was improved by ZrC nanoparticles, the spreading areas of Sn–9Zn–xZrC (x = 0–0.12) were increased firstly then decreased with increasing ZrC content. The spreading area of Sn–9Zn was about 143.64 mm2 and reached maximum about 190.92 mm2 of Sn–9Zn–0.06ZrC. The microstructure of Sn–9Zn–0.06ZrC solder alloy consisted of β-Sn, Sn–Zn eutectic and intermetallic compounds (IMCs), and the microstructure of Sn–9Zn alloy was refined by adding appropriate amounts of ZrC nanoparticles. The interfacial IMCs at the β-Sn boundary in the Sn–9Zn–0.06ZrC solder joint was Cu5Zn8, and partial Cu5Zn8 was transformed to Cu6Sn5 during aging treatment. The IMCs layer thickness was dominated by aging temperature, and ZrC facilitated the IMCs layer growth. The tensile strength of Sn–9Zn based solder joints was enhanced by adding ZrC particles, and then are decreased simultaneously with increasing aging temperature. The fracture surface of Sn–9Zn joints after aging was mainly composed of uniform dimples, and the fracture mechanism of Sn–9Zn based solder joints was ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Liu, Z.H. Wang, J.Y. Xie, J.S. Ma, Q.Y. Shi, G. Zhang, K. Suganuma, Corros. Sci. 112, 150 (2016)

    Article  Google Scholar 

  2. S. Liu, S.B. Xue, P. Xue, D.X. Luo, J. Mater. Sci.: Mater. Electron. 26, 4389 (2015)

    Google Scholar 

  3. T. Gancarz, P. Bobrowski, J. Pstruś, S. Pawlak, J. Alloys Compd. 679, 442 (2016)

    Article  Google Scholar 

  4. T. Gancarz, Metall. Mater. Trans. A 47, 1 (2016)

    Google Scholar 

  5. P. Xue, S.B. Xue, Y.F. Shen, F. Long, H. Zhu, J. Mater. Sci.: Mater. Electron. 25, 4219 (2014)

    Google Scholar 

  6. P. Xue, S.B. Xue, Y.F. Shen, H. Zhu, Mater. Des. 60, 1 (2014)

    Article  Google Scholar 

  7. G. Ren, M.N. Collins, Mater. Des. 119, 133 (2017)

    Article  Google Scholar 

  8. M.M. Billah, K.M. Shorowordi, A. Sharif, J. Alloys Compd. 585, 32 (2014)

    Article  Google Scholar 

  9. C.Y. Liu, M.H. Hon, M.C. Wang, Y.R. Chen, K.M. Chang, W.L. Li, J. Alloys Compd. 582, 229 (2014)

    Article  Google Scholar 

  10. A.B. El Basaty, A.M. Deghady, E.A. Eid, Mater. Sci. Eng. A 701, 245 (2017)

    Article  Google Scholar 

  11. W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, M. Ding, Mater. Sci. Eng. A 678, 252 (2016)

    Article  Google Scholar 

  12. M. Ding, W. Xing, X. Yu, L. Ma, W. Zuo, Z. Ji, J. Alloys Compd. 739, 481 (2018)

    Article  Google Scholar 

  13. M.L. Huang, F. Zhang, F. Yang, N. Zhao, J. Mater. Sci.: Mater. Electron. 26, 2278 (2015)

    Google Scholar 

  14. T. Gancarz, P. Bobrowski, S. Pawlak, N. Schell, R. Chulist, K. Janik, J. Electron. Mater. 47, 49 (2017)

    Article  Google Scholar 

  15. J.X. Jiang, J.E. Lee, K.S. Kim, J. Alloys Compd. 462, 244 (2008)

    Article  Google Scholar 

  16. K.S. Kim, T. Matsuura, K. Suganuma, J. Electron. Mater. 35, 41 (2006)

    Article  Google Scholar 

  17. G.Q. Wei, J. Mater. Sci.: Mater. Electron. 23, 130 (2012)

    Google Scholar 

  18. T. Gancarz, P. Fima, J. Pstruś, J.Mater. Eng. Perform. 23, 1524 (2014)

    Article  Google Scholar 

  19. T. Luan, W. Guo, S. Yang, Z. Ma, J. He, J. Yan, J. Mater. Process. Technol. 248, 123 (2017)

    Article  Google Scholar 

  20. D.X. Luo, S.B. Xue, S. Liu, J. Mater. Sci.: Mater. Electron. 25, 5195 (2014)

    Google Scholar 

  21. L. Yang, J. Ge, Y. Zhang, J. Dai, Trans. Indian Inst. Met. 70, 2429 (2017)

    Article  Google Scholar 

  22. C.S. Lee, F.S. Shieu, J. Electron. Mater. 35, 1660 (2006)

    Article  Google Scholar 

  23. L. Yang, Y.C. Zhang, J. Dai, Y.F. Jing, J.G. Ge, N. Zhang, Mater. Des. 67, 209 (2015)

    Article  Google Scholar 

  24. C.L. Chuang, L.C. Tsao, J. Mater. Sci.: Mater. Electron. 29, 4096 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51375294, 51505010, 51401037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Yaocheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wei, D., Zhang, Y. et al. Effect of aging temperature on microstructure and mechanical properties of Sn–9Zn–xZrC solder joints. J Mater Sci: Mater Electron 30, 753–759 (2019). https://doi.org/10.1007/s10854-018-0344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0344-y

Navigation