Skip to main content
Log in

Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Kesterite-Cu2ZnSnS4 (CZTS) thin films were deposited on molybdenum (Mo) coated glass substrates using electron-beam evaporation from stacked layer precursor (Cu/Sn/Cu/Zn). Influence of substrate temperatures during the deposition on the morphological, optical and structural properties of CZTS thin films were investigated using FE-SEM, EDS, Raman, UV–Vis and XRD methods. X-ray diffraction studies revealed that CZTS films deposited at 310 °C possess kesterite structure with preferential growth along (112) plane. FE-SEM studies revealed that the surface of the CZTS film contains spherical shaped grains distributed on the surface, the surface becomes smooth and the grain size increases with increase of the substrate temperature. Size, shape, and distribution of the elements and their effect on the CZTS films surface were studied as a function of substrate temperature. With increase of substrate temperature, the band gap value of CZTS thin films reduce from 1.46 to 1.11 eV. At 310 °C, Hall coefficient study showed that the CZTS film has p-type conductivity with low resistivity of 4.23 Ω cm. Solar cells were fabricated on a soda lime glass (SLG) substrate with the following structure SLG/Mo/Cu2ZnSnS4/CdS/i-ZnO Al:ZnO/Al. The optimized solar cell has a conversion efficiency of 2.4% with Jsc = 12.5 mA/cm2, Voc = 332 mV and FF = 58.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, Nat. Mater. 10, 857 (2011)

    Article  CAS  Google Scholar 

  2. S.W. Shin, S. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells 95, 3202 (2011)

    Article  CAS  Google Scholar 

  3. U. Ghorpade, M. Suryawanshi, S.W. Shin, K. Gurav, P. Patil, S. Pawar, C.W. Hong, J.H. Kim, S. Kolekar, Chem. Commun. 50, 11258 (2014)

    Article  CAS  Google Scholar 

  4. U.V. Ghorpade, M.P. Suryawanshi, S.W. Shin, C.W. Hong, I. Kim, J.H. Moon, J.H. Yun, J.H. Kim, S.S. Kolekar, Phys. Chem. Chem. Phys. 17, 19777 (2015)

    Article  CAS  Google Scholar 

  5. R. Chalapathy, G.S. Jung, B.T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3216 (2011)

    Article  CAS  Google Scholar 

  6. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. Chey, N. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. 97, 143508 (2010)

    Article  Google Scholar 

  7. J. Ge, Y. Wu, C. Zhang, S. Zuo, J. Jiang, J. Ma, P. Yang, J. Chu, Appl. Surf. Sci. 258, 7250 (2012)

    Article  CAS  Google Scholar 

  8. A. Wangperawong, J. King, S. Herron, B. Tran, K. Pangan-Okimoto, S. Bent, Thin Solid Films 519, 2488 (2011)

    Article  CAS  Google Scholar 

  9. Z. Su, C. Yan, K. Sun, Z. Han, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Appl. Surf. Sci. 258, 7678 (2012)

    Article  CAS  Google Scholar 

  10. Z. Su, C. Yan, D. Tang, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, CrystEngComm 14, 782 (2012)

    Article  CAS  Google Scholar 

  11. K. Tanaka, M. Kurokawa, K. Moriya, H. Uchiki, J. Alloy. Compd. 571, 98 (2013)

    Article  CAS  Google Scholar 

  12. J. He, L. Sun, N. Ding, H. Kong, S. Zuo, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloy. Compd. 529, 34 (2012)

    Article  CAS  Google Scholar 

  13. K. Gurav, S. Pawar, S.W. Shin, G. Agawane, P. Patil, J.-H. Moon, J. Yun, J.H. Kim, Appl. Surf. Sci. 283, 74 (2013)

    Article  CAS  Google Scholar 

  14. S. Chen, X. Gong, A. Walsh, S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009)

    Article  Google Scholar 

  15. J. Hein, H. Morgner, K. Häfner, 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, (2009) p. 2800

  16. E. Mkawi, K. Ibrahim, M. Ali, M. Farrukh, N.K. Allam, Superlattice Microstruct. 76, 339 (2014)

    Article  CAS  Google Scholar 

  17. Y.L. Zhou, W.H. Zhou, Y.F. Du, M. Li, S.X. Wu, Mater. Lett. 65, 1535 (2011)

    Article  CAS  Google Scholar 

  18. X. Lu, Z. Zhuang, Q. Peng, Y. Li, Chem. Commun. 47, 3141 (2011)

    Article  CAS  Google Scholar 

  19. J.I. Pankove, Optical Processes in Semiconductors, (Courier Corporation, Chelmsford, 2012)

    Google Scholar 

  20. A. Khare, B. Himmetoglu, M. Cococcioni, E.S. Aydil, J. Appl. Phys. 111, 123704 (2012)

    Article  Google Scholar 

  21. Y. Lin, S. Ikeda, W. Septina, Y. Kawasaki, T. Harada, M. Matsumura, Sol. Energy Mater. Sol. Cells 120, 218 (2014)

    Article  CAS  Google Scholar 

  22. F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Adv. Energy Mater. 4, 1301381 (2014)

    Article  Google Scholar 

  23. H. Park, Y.H. Hwang, B.-S. Bae, J. Sol-Gel. Sci. Technol. 65, 23 (2013)

    Article  CAS  Google Scholar 

  24. D.R. Harshman, R.N. Kleiman, R.C. Haddon, S.V. Chichester-Hicks, M.L. Kaplan, L.W. Rupp, T. Pfiz, D.L. Williams, D. Mitzi, Phys. Rev. Lett. 64, 1293 (1990)

    Article  CAS  Google Scholar 

  25. M. Snure, A. Tiwari, Appl. Phys. Lett. 91, 092123 (2007)

    Article  Google Scholar 

  26. S.G. Lee, J. Kim, H.S. Woo, Y. Jo, A. Inamdar, S. Pawar, H.S. Kim, W. Jung, H.S. Im, Curr. Appl. Phys. 14, 254 (2014)

    Article  Google Scholar 

  27. M. Wei, Q. Du, D. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 79, 177 (2012)

    Article  CAS  Google Scholar 

  28. H.P. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2, 309 (2011)

    Article  Google Scholar 

  29. L.I. Maissel, R. Glang, Handbook of Thin Film Technology, (McGraw-Hill, New York, 1970)

    Google Scholar 

  30. M. Tokumoto, A.G. Swanson, J.S. Brooks, C.C. Agosta, S.T. Hannah, N. Kinoshita, H. Anzai, M. Tamura, H. Tajima, H. Kuroda, J.R. Anderson, Organic, Superconductivity, (Plenum, New York, 1990), pp. 167–190

    Book  Google Scholar 

  31. P. Fernandes, P. Salomé, A. Sartori, J. Malaquias, A. Da Cunha, B.-A. Schubert, J. González, G. Ribeiro, Sol. Energy Mater. Sol. Cells 115, 157 (2013)

    Article  CAS  Google Scholar 

  32. A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, S. Siebentritt, IEEE J. Photovolt. 1, 200 (2011)

    Article  Google Scholar 

  33. Y. Pei, J. Guo, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, Sol. Energy 148, 157 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. 130-26-D1439. The authors, therefore, acknowledge with thanks the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Mkawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkawi, E.M., Al-Hadeethi, Y., Shalaan, E. et al. Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation. J Mater Sci: Mater Electron 29, 20476–20484 (2018). https://doi.org/10.1007/s10854-018-0182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0182-y

Navigation