Skip to main content
Log in

Barium titanate@polyaniline core–shell semiconducting particles reinforced poly(vinylidene fluoride) flexible films with a percolation threshold and high dielectric constant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium titanate@polyaniline (BT@PANI) core–shell semiconducting particles were prepared by the introduction of polyacrylic acid onto the surface of BT via in-stiu polymerization. Polyvinylidene fluoride (PVDF) based composites filling BT@PANI particles with 3.336 × 10−2 S cm−1 presented positive multiple effect in enhancing dielectric constant of the three-phase composites. A percolation threshold appeared at a BT@PANI loading of 30 wt%, where the composite exhibited a high dielectric constant of 247 at 103 Hz, as well as winding and folding performance. The excellent dielectric behavior could be ascribed to the fact that the BT@PANI/PVDF composites realized multiple dielectric mechanisms, including the sufficient interfacial polarization, the effective BT polarization, and the microcapacitor mechanism. As a result, the novelty ceramic particles/polymer composite films presented a good balance of dielectric performance and mechanical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Li, L. Jiang, X. Zhang, Y. Shen, C.W. Nan, J. Mater. Chem. A 2, 15803 (2014)

    Article  Google Scholar 

  2. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, R. Ramprasad, Prog. Mater. Sci. 83, 236 (2016)

    Article  Google Scholar 

  3. X.W. Peng, W.H. Xu, L.L. Chen, Y.H. Ding, T.X.,S.L. Chen, H.Q. Hou, React. Funct. Polym. 106, 93 (2016)

    Article  Google Scholar 

  4. Q.G. Chi, Z.Y. Gao, C.H. Zhang, Y. Cui, J.F. Dong, X. Wang, Q.Q. Lei, J. Mater. Sci. 28, 15142 (2017)

    Google Scholar 

  5. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)

    Article  Google Scholar 

  6. M. Arbatti, X. Shan, Z.Y. Cheng, Adv. Mater. 19, 1369 (2007)

    Article  Google Scholar 

  7. Y. Kobayashi, A. Kosuge, M. Konno, Appl. Surf. Sci. 255, 2723 (2008)

    Article  Google Scholar 

  8. K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 4, 034105 (2013)

    Article  Google Scholar 

  9. N. Kamezawa, D. Nagao, H. Ishii, M. Konno, J. Eur. Polym. 66, 528 (2015)

    Article  Google Scholar 

  10. J. Yan, Y.G. Jeong, Compos. Sci. Technol. 144, 1 (2017)

    Article  Google Scholar 

  11. D.S. Kim, C.Y. Baek, H.J. Ma, D.K. Kimn, Ceram. Int. 42, 7141 (2016)

    Article  Google Scholar 

  12. M.N. Almadhoun, U.S. Bhansali, H.N. Alshareef, J. Mater. Chem. 22, 11196 (2012)

    Article  Google Scholar 

  13. L.J. Yu, Y.F. Zhu, Y.O. Fu, RSC Adv. 58, 36473 (2017)

    Article  Google Scholar 

  14. Y.F. Zhu, Q.Q. Ni, Y.Q. Fu, RSC Adv. 5, 3748 (2015)

    Article  Google Scholar 

  15. Z.M. Dang, Y. Shen, C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002)

    Article  Google Scholar 

  16. X. Huang, Z. Pu, M. Feng, M. Feng, L. Tong, X. Liu, Mater. Lett. 96, 139 (2013)

    Article  Google Scholar 

  17. J.G. Liu, G.F. Tian, S.L. Qi, Z.P. Wu, D.Z. Wu, Mater. Lett. 124, 117 (2014)

    Article  Google Scholar 

  18. S. George, M.T. Sebastian, Compos. Sci. Technol. 69, 1298 (2009)

    Article  Google Scholar 

  19. S.B. Luo, S.H. Yu, R. Sun, C.P. Wong, Appl. Mater. Interface 6, 176 (2014)

    Article  Google Scholar 

  20. P. Chutia, A. Kumar, Physica B 436, 200 (2014)

    Article  Google Scholar 

  21. H. Cheng, Q.M. Zhang, Appl. Phys. Lett. 82, 3502 (2003)

    Article  Google Scholar 

  22. B. Belaabed, J.L. Wojkiewicz, S. Lamouri, N.E. Kamchi, N. Redon, Polym. Adv. Technol. 23, 1194 (2011)

    Article  Google Scholar 

  23. T. Wang, X.H. Zhang, D. Chen, Y.H. Ma, L. Wang, C.W. Zhao, W.T. Yang, Appl. Surf. Sci. 356, 232 (2015)

    Article  Google Scholar 

  24. X. Zhang, Q.L. He, H.B. Gu, S.Y. Wei, Z.H. Guo, J. Mater. Chem. C 1, 2886 (2013)

    Article  Google Scholar 

  25. J. Stejskal, I. Sapurina, M. Trchova, Prog. Polym. Sci. 35, 1420 (2010)

    Article  Google Scholar 

  26. Z. Rozlivkova, M. Trchova, M. Exnerova, J. Stejskal, Synth. Met. 161, 1122 (2011)

    Article  Google Scholar 

  27. Y.T. Tan, Y.F. Zhang, L.B. Kong, L. Kang, F. Ran, J. Alloy. Part. 722, 1 (2017)

    Article  Google Scholar 

  28. Y.L. Sun, Y.Q. Gu, H. Li, F.X. Geng, Mater. Lett. 185, 208 (2016)

    Article  Google Scholar 

  29. L.J. Yu, X. Li, Q.X. Yang, Y.F. Zhu, Y.Q. Fu, Mater. Lett. 227, 229 (2018)

    Article  Google Scholar 

  30. D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, D.P. Dubal, S.M. Pawar, C.D. Lokhande, Curr. Appl. Phys. 10, 904 (2010)

    Article  Google Scholar 

  31. K.S. Deepa, S. Kumari Nisha, P. Parameswaran, M.T. Sebastian, J. James, Appl. Phys. Lett. 94, 142902 (2009)

    Article  Google Scholar 

  32. H. Hu, J.M. Saniger, J.G. Bañuelos, Thin Solid Films 347, 241 (1999)

    Article  Google Scholar 

  33. H. Hu, J.L. Cadenas, J.M. Saniger, Polym. Int. 45, 262 (1998)

    Article  Google Scholar 

  34. X. Zhang, Q.L. He, H.B. Gu, S. Wei, Z.H. Guo, J. Mater. Chem. C 1, 2886 (2013)

    Article  Google Scholar 

  35. N. Joseph, J. Varghese, M.T. Sebastian, Compos. B 123, 271 (2017)

    Article  Google Scholar 

  36. S. Saïdi, M. Aymen, M. Bouzitoun, A.B. Mohamed, Sci. Semicond. Process. 26, 336 (2014)

    Article  Google Scholar 

  37. S.H. Liu, S.X. Xue, W.Q. Zhang, J.W. Zhai, Ceram. Int. 40, 15633 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (51767016) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Yan Wang or Zhi-Min Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., Zhang, XT., Zha, JW. et al. Barium titanate@polyaniline core–shell semiconducting particles reinforced poly(vinylidene fluoride) flexible films with a percolation threshold and high dielectric constant. J Mater Sci: Mater Electron 30, 3325–3331 (2019). https://doi.org/10.1007/s10854-018-00605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00605-1

Navigation