Skip to main content
Log in

Synthesis of rich fluffy porous carbon spheres by dissolution–reassembly method for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon spheres with rich porous structure are regarded as ideal materials for practical supercapacitors because of their excellent thermal stabilities, large surface areas, high electrical conductivities and good cycle stabilities. In this work, a novel dissolution–reassembly method is developed for the fabrication of rich porous carbon spheres (PCS) with high capability for supercapacitor. The resorcinol–formaldehyde resin is firstly synthesized then completely dissolved by acetone into oligomer fragments which further reassemble with F127 to form new structured resin spheres. After carbonization, PCS are obtained. The obtained PCS have regular spherical morphology, rich porous structure, high specific surface area and pore volume. As electrode material for supercapacitor, the PCS exhibit excellent performance with capacitance 240 F g−1 at the current density of 1 A g−1 and outstanding cycling life stability (98.1% after 5000 cycles) at the current density of 5 A g−1, showing the great potential for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.M. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013)

    Article  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  3. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)

    Article  Google Scholar 

  4. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  5. J.P. Marcolozar, M. Kunowsky, F. Suárezgarcía, J.D. Carruthers, A. Linaressolano, Activated carbon monoliths for gas storage at room temperature. Energy Environ. Sci. 5, 9833–9842 (2012)

    Article  Google Scholar 

  6. Y. Li, Z.Y. Fu, B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634–4667 (2012)

    Article  Google Scholar 

  7. L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin, Z.L. Zhang, Y.H. Huang, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497–2504 (2013)

    Article  Google Scholar 

  8. X.J. Wei, S.G. Wan, X.Q. Jiang, Z. Wang, S.Y. Gao, Peanut-shell-like porous carbon from nitrogen-containing poly-N-phenylethanolamine for high-performance supercapacitor. ACS Appl. Mater. Interfaces 7, 22238–22245 (2015)

    Article  Google Scholar 

  9. L. Kong, W. Wei, Q. Zhao, J.Q. Wang, Y. Wan, Active coordinatively unsaturated manganese monoxide-containing mesoporous carbon catalyst in wet peroxide oxidation. ACS Catal. 2, 2577–2586 (2012)

    Article  Google Scholar 

  10. E. Gauthier, T. Hellstern, I.G. Kevrekidis, J. Benziger, Drop detachment and motion on fuel cell electrode materials. ACS Appl. Mater. Interfaces 4, 761–771 (2012)

    Article  Google Scholar 

  11. S. Dutta, A. Bhaumik, C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014)

    Article  Google Scholar 

  12. X. Zheng, W. Lv, Y. Tao, J. Shao, C. Zhang, D. Liu, J. Luo, D.W. Wang, Q.H. Yang, Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 26, 6896–6903 (2014)

    Article  Google Scholar 

  13. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  14. M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249–1259 (2013)

    Article  Google Scholar 

  15. Q. He, Y. Wang, X.X. Liu, D.J. Blackwood, J.S. Chen, One-pot synthesis of self-supported hierarchical urchin-like Ni3S2 with ultrahigh areal pseudocapacitance. J. Mater. Chem. A 6, 22115–22122 (2018)

    Article  Google Scholar 

  16. Z.B. Pan, M.K. Wang, J.W. Chen, B. Shen, J.J. Liu, J.W. Zhai, Largely enhanced energy storage capability of polymer nanocomposite utilizing a core-satellite strategy. Nanoscale 10, 16621–16629 (2018)

    Article  Google Scholar 

  17. H. Jiang, L.P. Yang, C.Z. Li, C.Y. Yan, P.S. Lee, J. Ma, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4, 1813–1819 (2011)

    Article  Google Scholar 

  18. M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)

    Article  Google Scholar 

  19. B.B. Chang, W.W. Shi, S.C. Han, Y.N. Zhou, Y.X. Liu, S. Zhang, B.C. Yang, N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chem. Eng. J. 350, 585–598 (2018)

    Article  Google Scholar 

  20. J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2010)

    Article  Google Scholar 

  21. J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)

    Article  Google Scholar 

  22. Z. Yue, J. Economy, C.L. Mangun, Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon 41, 1809–1817 (2003)

    Article  Google Scholar 

  23. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  Google Scholar 

  24. Z.J. Zhang, C. Dong, X.Y. Ding, Y.K. Xia, A generalized ZnCl2 activation method to produce nitrogen-containing nanoporous carbon materials for supercapacitor applications. J. Alloys Compd. 636, 275–281 (2015)

    Article  Google Scholar 

  25. X.M. Ma, M.X. Liu, L.H. Gan, Y.H. Zhao, L.W. Chen, Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J. Solid State Electrochem. 17, 2293–2301 (2013)

    Article  Google Scholar 

  26. J. Choma, D. Jamioła, K. Augustynek, M. Marszewski, M. Gao, M. Jaroniec, New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. J. Mater. Chem. 22, 12636–12642 (2012)

    Article  Google Scholar 

  27. Z.Q. Wang, L.X. Sun, F. Xu, X.J. Peng, The synthesis of nitrogen-doped mesoporous carbon spheres for hydrogen storage. Mater. Sci. Forum 852, 864–869 (2016)

    Article  Google Scholar 

  28. Y. Fang, D. Gu, Y. Zou, D.Y. Zhao, A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010)

    Article  Google Scholar 

  29. Y.T. Gong, Z.Z. Wei, J. Wang, P.F. Zhang, H. Li, Y. Wang, Design and fabrication of hierarchically porous carbon with a template-free method. Sci. Rep. 4, 6349 (2013)

    Article  Google Scholar 

  30. J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 123, 5894–5894 (2011)

    Article  Google Scholar 

  31. W. Xiong, M.X. Liu, L.H. Gan, Y.K. Lv, Y. Li, L. Yang, Z.J. Xu, Z.X. Hao, H.L. Liu, L.W. Chen, A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J. Power Sources 196, 10461–10464 (2011)

    Article  Google Scholar 

  32. J.P. Han, G.Y. Xu, B. Ding, J. Pan, H. Dou, D.R. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2, 5352–5357 (2014)

    Article  Google Scholar 

  33. G.X. Wang, R.C. Wang, L. Liu, H.L. Zhang, J. Du, Y.T. Zhang, M. Liu, K.H. Liang, A.B. Chen, Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor. Mater. Lett. 197, 71–74 (2017)

    Article  Google Scholar 

  34. D. Bhattacharjya, M.S. Kim, T.S. Bae, J.S. Yu, High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799–805 (2013)

    Article  Google Scholar 

  35. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001)

    Article  Google Scholar 

  36. W. Yang, Y.Y. Feng, D. Xiao, H.Y. Yuan, Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. Int. J. Energy Res. 39, 805–811 (2015)

    Article  Google Scholar 

  37. A.B. Chen, K.C. Xia, L.S. Zhang, Y.F. Yu, Y.T. Li, H.X. Sun, Y.Y. Wang, Y.Q. Li, S.H. Li, Fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules for supercapacitors. Langmuir 32, 8934–8941 (2016)

    Article  Google Scholar 

  38. B.H. Kim, K.S. Yang, H.G. Woo, Bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochem. Commun. 13, 1042–1046 (2011)

    Article  Google Scholar 

  39. M.M. Yang, B. Cheng, H.H. Song, X.H. Chen, Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim. Acta 55, 7021–7027 (2010)

    Article  Google Scholar 

  40. Q. Zhang, L. Li, Y.L. Wang, Y.J. Chen, F. He, S.L. Gai, P.P. Yang, Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. Electrochim. Acta 176, 542–547 (2015)

    Article  Google Scholar 

  41. P. Wen, Z. Li, P. Gong, J. Sun, J. Wang, S. Yang, Design and fabrication of carbonized rGO/CMOF-5 hybrid for supercapacitor applications. RSC Adv. 6, 13264–13271 (2016)

    Article  Google Scholar 

  42. G.X. Wang, X.L. Hu, L. Liu, Y.F. Yu, H.J. Lv, A.B. Chen, Nitrogen-doping hierarchically porous carbon nanosheets for supercapacitor. J. Mater. Sci.: Mater. Electron. 29, 5363–5372 (2018)

    Google Scholar 

  43. Y.Y. Wang, Y.F. Yu, G. Li, L. Liu, H.L. Zhang, G.X. Wang, A.B. Chen, Sea urchin-like core/shell hierarchical porous carbon for supercapacitors. J. Alloys Compd. 719, 438–445 (2017)

    Article  Google Scholar 

  44. N.S. Zhang, N. Gao, C.P. Fu, D. Liu, S.C. Li, L.L. Jiang, H.H. Zhou, Y.F. Kuang, Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochim. Acta 235, 340–347 (2017)

    Article  Google Scholar 

  45. J. Du, L. Liu, Z.P. Hu, Y.F. Yu, Y. Zhang, S.L. Hou, A.B. Chen, Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors. ACS Sustain. Chem. Eng. 6, 4008–4015 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21676070), Hebei One Hundred-Excellent Innovative Talent Program (III) (SLRC2017034), Hebei Science and Technology Project (17214304D, 16214510D), The Excellent Going Abroad Experts’ Training Program in Hebei Province. Beijing National Laboratory for Molecular Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Senlin Hou or Aibing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, L., Yu, Y. et al. Synthesis of rich fluffy porous carbon spheres by dissolution–reassembly method for supercapacitors. J Mater Sci: Mater Electron 30, 3316–3324 (2019). https://doi.org/10.1007/s10854-018-00604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00604-2

Navigation