Skip to main content
Log in

Synthesis and characterization of novel reduced graphene oxide supported barium niobate (RGOBN) nanocomposite with enhanced ferroelectric properties and thermal stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel reduced graphene oxide/barium niobate (RGOBN) nanocomposites were synthesized by hydrothermal method. The microstructure and morphology of graphene oxide, barium niobate and reduced graphene oxide/barium niobate was analysed by X-ray diffraction (XRD), FTIR, FTRaman, high resolution scanning electron microscopy and EDAX. XRD analysis showed that Barium Niobate samples are in perovskite phases, and the lattice parameters a, b and c almost decreased linearly with the increase of graphene nanosheets. The optical studies reveal the band gap of the nanocomposite to be 2.86 eV. Thermal studies show that RGOBN has high thermal stability than graphene. The remanant polarization and coercive electric field (0.0892 µC cm−2, −10.81 kV cm−1) of RGOBN nanocomposite superlattices calculated using P–E curve showed the strong hybrid interactions between graphene and barium niobate (BN) by decreasing leakage current density from 10−7 to 10−8 Acm−2. Graphene when incorporated into BN nanocubes increased the ferroelectric property almost two times than pure BN nanostructures. The squareness of polarization is also calculated for RGOBN and compared with that of BN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Luo, X. Wang, E. Tian, H. Gong, Q. Zhao, Z. Shen, Y. Xu, X. Xiao, L. Li, Dielectric enhancement in graphene/barium titanate nanocomposites. ACS Appl. Mater. Interfaces 8, 3340–3348 (2016)

    Article  CAS  Google Scholar 

  2. D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, Self-Assembled TiO2–graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano 3(4), 907–914 (2009)

    Article  CAS  Google Scholar 

  3. T. Sekiba, K. Sato, K. Nakayama, P. Terashima, J.H. Richard, H. Bowen, Y.M. Ding, L.J. Xu, G.H. Li, Z.A. Cao, T. Xu, Takahashi, Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission. New J. Phys. 11, 025020 (2009)

    Article  Google Scholar 

  4. X. Wang, Z. Li, J. Shi, Y. Yu, One-Dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114(19), 9346–9384 (2014)

    Article  CAS  Google Scholar 

  5. X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La xSrxMnO3. Dalton Trans. 46, 13720–13730 (2017)

    Article  CAS  Google Scholar 

  6. K. Kaviyarasu, C. Maria Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E. Subba Reddy, N.K. Rotte, C.S. Sharma, F.T. Thema, D. Letsholathebe, G.T. Mola. M. Maaza, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method, J. Photochem. Photobiol. B 173, 466–475 (2017)

    Article  CAS  Google Scholar 

  7. D. Du, J. Liu, X. Zhang, X. Cui, Y. Lin, One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: preparation, characterization and application for detection of organophosphorus agents. J. Mater. Chem. 21, 8032–8037 (2011)

    Article  CAS  Google Scholar 

  8. S. Giri, D. Ghosh, C.K. Das, Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv. Funct. Mater. 24, 1312–1324 (2013)

    Article  Google Scholar 

  9. J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. Electrochim. Acta 193, 104–115 (2016)

    Article  CAS  Google Scholar 

  10. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405, 329–336 (2017)

    Article  CAS  Google Scholar 

  11. J. Cheng, B. Wang, H.L. Xin, G. Yang, H. Cai, F. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1, 10814–10820 (2013)

    Article  CAS  Google Scholar 

  12. Y. Ye, T. kong, X. Yu, Y. Yu, K. Zhang, X. Wang, Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89, 417–421 (2012)

    Article  CAS  Google Scholar 

  13. T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard Mater. 186, 921–931 (2011)

    Article  CAS  Google Scholar 

  14. E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40(10), 16065–16070 (2014)

    Article  CAS  Google Scholar 

  15. J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017)

    Article  CAS  Google Scholar 

  16. E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, U.K. Mudali, Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141–145 (2015)

    Article  CAS  Google Scholar 

  17. S.K. Hazra, S. Basu, Graphene-oxide nano composites for chemical sensor applications. J. Carbon Res. 2, 12 (2016)

    Article  Google Scholar 

  18. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  19. M. Zhang, C. Hu, H. Liu, Y. Xiong, Z. Zhang, A rapid-response humidity sensor based on BaNbO3 nanocrystals. Sens. Actuators B 136, 128–132 (2009)

    Article  CAS  Google Scholar 

  20. S.Y. Wu, X.M. Chen, X.Q. Liu, Hydrothermal derived barium niobate ultra-fine powders and nanowires. J. Alloys Compd. 453, 463–469 (2008)

    Article  CAS  Google Scholar 

  21. X. Mei, X. Meng, F. Wu, Hydrothermal method for the production of reduced graphene oxide. Phys. E 68, 81–86 (2015)

    Article  CAS  Google Scholar 

  22. M. Li, X. Xiao, Y. Liu, W. Zhang, Y. Zhang, L. Chen, Ternary perovskite cobalt titanate/graphene composite material as long-term cyclic anode for lithium-ion battery. J. Alloys Compd. 700, 54–60 (2017)

    Article  CAS  Google Scholar 

  23. B. Cullity, Elements of X-ray Diffraction (A.W.R.C. Inc., Massachusetts, 1967)

    Google Scholar 

  24. A. Kaniyoor, T. Theres Baby, S. Ramaprabhu, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem. 20, 8467–8469 (2010)

    Article  CAS  Google Scholar 

  25. T.Y. Ke, H.A. Chen, H.S. Sheu, J.W. Yeh, H.N. Lin, C.Y. Lee, H.T. Chiu, Sodium niobate nanowire and its piezoelectricity. J. Phys. Chem. C 112, 8827–8883 (2008)

    Article  CAS  Google Scholar 

  26. M. Li, X. Fan, X. Xiao, X. Huang, Y. Jiang, L. Chen, Ternary perovskite nickel titanate/reduced graphene oxide nanocomposite with improved lithium storage properties. RSC Adv. 6, 61312–61318 (2016)

    Article  CAS  Google Scholar 

  27. W. Bai, H. Huanga, Y. Li, H. Zhang, B. Lianga, R. Guo, L. Dua, Z. Zhanga, Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochem. Acta 117, 322–328 (2014)

    Article  CAS  Google Scholar 

  28. S. Vidya, K.C. Mathai, A. John, S. Solomon, K. Joy, J.K. Thomas, Optical and dielectric properties of nano BaNbO3 prepared by a combustion technique. Adv. Mater. Res. 2(3), 141–153 (2013)

    Article  Google Scholar 

  29. K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B 195, 409–415 (2014)

    Article  CAS  Google Scholar 

  30. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)

    Article  CAS  Google Scholar 

  31. A.A. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 19491.https://doi.org/10.1038/srep19491

    Article  CAS  Google Scholar 

  32. S. Park, H.J. Song, C.W. Lee, S.W. Hwang, I.S. Cho, Enhanced photocatalytic activity of ultrathin Ba5Nb4O15 two-dimensional nanosheets. ACS Appl. Mater. Interfaces, 7(39), 21860–21867 (2015)

    Article  CAS  Google Scholar 

  33. Z. Lei, L. Lu, X.S. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5, 6391 (2012)

    Article  CAS  Google Scholar 

  34. B.Y.S. Chang, N.M. Huang, M.N. An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim, C.H. Chia, Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. Int. J. Nanomed. 7, 3379–3387 (2012)

    CAS  Google Scholar 

  35. Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu, M. Wang, Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36, 1774–1780 (2012)

    Article  CAS  Google Scholar 

  36. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  37. C. Xu, X. Wang, J. Zhu, Graphene-metal particle nanocomposites. J. Phys. Chem. C 112(50), 9841–19845 (2008)

    Article  Google Scholar 

  38. C.J. Huang, K. Li, S.Y. Wu, X.L. Zhu, X.M. Chen, Variation of ferroelectric hysteresis loop with temperature in (SrxBa1–x) Nb2O6 unfilled tungsten bronze ceramics. J. Mater. 1(2), 146–152 (2015)

    Google Scholar 

  39. M. Chandran, B. Tiwari, C.R. Kumaran, S.K. Samji, S.S. Bhattacharya, M.S.R. Rao, Integration of perovskite PZT thin films on diamond substrate without buffer layer. J. Phys. D: Appl. Phys. 45, 202001 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shahil Kirupavathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.I.S., Kirupavathy, S.S., Jerusha, E. et al. Synthesis and characterization of novel reduced graphene oxide supported barium niobate (RGOBN) nanocomposite with enhanced ferroelectric properties and thermal stability. J Mater Sci: Mater Electron 29, 19228–19237 (2018). https://doi.org/10.1007/s10854-018-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0049-2

Navigation