Skip to main content

Advertisement

Log in

Studies on Cr electrode of CdZnTe detector for high energy radiation detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrode with proper contact properties is of vital importance to CdZnTe detector for high energy radiation detection. In this work, Au and Cr electrodes are prepared on CdZnTe surface using magnetron sputtering method. The surface morphology and the interface structure are analyzed using atomic force microscopy and X-ray photoelectron spectroscopy (XPS). No reaction is found at Au/CZT interface. But for Cr/CdZnTe, interface layers of CrO and Te were found, which forms a structure of Cr/Cr–O/Te/CdZnTe with a metal-insulator-metal tunnel junction. Due to this interface structure, Schottky Barrier height was tuned, which enhanced the collection efficiency and energy resolution for high energy irradiation. The energy resolution of CdZnTe detector with Cr electrode for 137Cs isotope with the energy of 662 keV reaches about 1.3%. The adhesive force of Cr is also enhanced because of the interface reaction. The results prove Cr to be a proper electrode material for CdZnTe detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Del Sordo, L. Abbene, E. Caroli et al., Sensors 9, 5 (2009)

    Google Scholar 

  2. P.F. Wang, R.H. Nan, Z.Y. Jian, J. Mater. Sci. 28, 7 (2016)

    Google Scholar 

  3. A. Garson, I.V. Jung, J. Perkins et al., IEEE Nuclear Science Symposium Conference Record, (2005)

  4. T. Zhang, Y. Du, F. Pan et al., IEEE Nuclear Science Symposium Conference Record 2011 (2011)

  5. L. Zhang, W. Zhang, J. Li et al., Int. J. Mod. Phys. 22, 159 (2014)

    Google Scholar 

  6. L.O. Giraldo, A.E. Bolotnikov, G.S. Camarda et al., IEEE Trans. Nucl. Sci. 99 (2017)

  7. U.N. Roy, R.M. Mundle, G.S. Camarda et al., 6, 26384 (2016)

  8. Y. Zhang, L. Wang, R. Xu et al., Appl. Surf. Sci. 25, 388 (2016)

    Article  Google Scholar 

  9. M. Rejhon, J. Franc, V. Dědič et al., J. Phys. D 49, 37 (2016)

    Article  Google Scholar 

  10. A. Cola, I. Farella, N. Auricchio et al., J. Opt. A 8, 7 (2006)

    Article  Google Scholar 

  11. S.J. Bell, M.A. Baker, D.D. Duarte et al., Appl. Surf. Sci. 427, 1257 (2017)

    Article  Google Scholar 

  12. P.H. Lu, P. Gomolchuk, H. Chen et al., Nucl. Instrum. Methods Phys. Res. Sect. A 784, 1–640 (2015)

    Article  Google Scholar 

  13. K. Qin, L. Wang, J. Zhang et al., Vacuum 86, 7 (2012)

    Google Scholar 

  14. S. Xi, W. Jie, G. Zha et al., J. Phys. Chem. C 118, 10 (2014)

    Google Scholar 

  15. S.J. Bell, M.A. Baker, H. Chen et al., J. Phys. D 46, 45 (2013)

    Article  Google Scholar 

  16. A.A. Rouse, C. Szeles, J.O. Ndap et al., IEEE Trans. Nucl. Sci 49, 4 (2002)

    Article  Google Scholar 

  17. W. Sang, J. Wei, Z. Qi et al., Nucl. Instrum. Methods Phys. Res. Sect. A 527, 3 (2004)

    Article  Google Scholar 

  18. N. Jia, Y. Xu, R. Guo et al., J. Cryst. Growth 457, (2017)

  19. I. Barin, G. Platzki, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Weinheim, 1995), pp. 570–1636

    Book  Google Scholar 

  20. J. Fan, W. Sang, Y. Lu et al., 9th International Conference on Solid-State and Integrated-Circuit Technology, 1–4, 753–756, (2008)

  21. J. Chastain, J.F. Moulder, R.C. King, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Waltham, 1995), pp. 130–131

    Google Scholar 

  22. Y. Li, L. Fu, J. Sun et al., J. Appl. Phys. 117, 8 (2015)

    Google Scholar 

  23. G. Zha, W. Jie, T. Tan et al., J. Phys. Chem. C111, 34 (2007)

    Google Scholar 

  24. A.E. Bolotnikov, S.E. Boggs, C.M. Hubert Chen et al., Nucl. Instrum. Methods Phys. Res. Sect. A 482, 1 (2002)

    Article  Google Scholar 

  25. Y. Xu, D. Ephron, M.R. Beasley, Phys. Rev. B52, 4 (1995)

    Google Scholar 

  26. J. Yoshida, T. Nagano, Phys. Rev. B55, 17 (1997)

    Google Scholar 

  27. L. Antognazza, K. Char, T.H. Geballe, Appl. Phys. Lett. 68, 7 (1996)

    Article  Google Scholar 

  28. L.A. Kosyachenko, T. Aoki, C.P. Lambropoulos et al., J. Appl. Phys. 113, 5 (2013)

    Article  Google Scholar 

  29. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007), pp. 136–139

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFF0101301, 2016YFF0101305), the National Natural Science Foundation of China (51672216, 51372205, 51502244) and the Central Universities Fundamental Research Foundation (3102015BJ(II)ZS014). The project was also supported by funds from the State Key Laboratory of Solidification Processing in NWPU (SKLSP201219). The authors are grateful to all of the members of Imdetek Co., Ltd for their help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanqi Jie or Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, S., Jie, W., Wang, T. et al. Studies on Cr electrode of CdZnTe detector for high energy radiation detection. J Mater Sci: Mater Electron 29, 5049–5056 (2018). https://doi.org/10.1007/s10854-017-8467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8467-0

Navigation