Skip to main content

Advertisement

Log in

Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped porous carbon aerogels were prepared by using low-cost and high yield cabbages as carbon source via a mild method, including hydrothermal, freeze-drying, and carbonization processes. Owing to natural structure and nitrogen-containing features, the as-prepared carbon aerogels exhibited hierarchical 3D network porous structure with suitable nitrogen-doped and high conductivity. With such unique structural characteristics, these carbon aerogels displayed a superior performance, such as superior capacitance of 291 F g−1 with high large capacitance retention of 96.76% after 10,000 cycles in 6 M KOH electrolyte, as well as high energy density of 97.1 Wh kg−1 with and long cycling stability of 92.87% after 10,000 cycles in ionic liquid. Moreover, these superoleophilic carbon aerogels exhibited excellent adsorption capacity and recyclability for various oils and organic solvents. This work fully utilized the advantages of the cabbage leaves derived porous carbon aerogels as a promising “green” candidate to apply in low-prices and high-performance energy storage devices and adsorbent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Hüsing, U. Schubert, Angew. Chem. Int. Ed. 37, 22–45 (1998)

    Article  Google Scholar 

  2. A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)

    Article  Google Scholar 

  3. H.D. Gesser, P.C. Goswami, Chem. Rev. 89, 765–788 (1989)

    Article  Google Scholar 

  4. Q. Long, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Energy Environ. Sci. 6, 2497–2504 (2013)

    Article  Google Scholar 

  5. Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, ACS Nano 7, 174–182 (2013)

    Article  Google Scholar 

  6. J.R. Miller, P. Simon, Science 321, 651–652 (2008)

    Article  Google Scholar 

  7. J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Angew. Chem. Int. Ed. 50, 1683–1687 (2011)

    Article  Google Scholar 

  8. X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Adv. Mater. 24, 5979–6004 (2012)

    Article  Google Scholar 

  9. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  10. D. Salinastorres, D. Lozanocastelló, M.M. Titirici, L. Zhao, L. Yu, E. Morallón, D. Cazorlaamoros, J. Mater. Chem. A 3, 15558–15567 (2015)

    Article  Google Scholar 

  11. J. Cui, Y. Xi, S. Chen, D. Li, X. She, J. Sun, W. Han, D. Yang, S. Guo, Adv. Funct. Mater. 26, 8487–8495 (2016)

    Article  Google Scholar 

  12. S. Zhang, J. Liu, P. Huang, H. Wang, C. Cao, W. Song, Sci. Bull. 62, 841–845 (2017)

    Article  Google Scholar 

  13. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Nanoscale 6, 12120–12129 (2014)

    Article  Google Scholar 

  14. R. Liu, X. Xi, X. Xing, D. Wu, RSC Adv. 6, 83613–83618 (2016)

    Article  Google Scholar 

  15. X.L. Wu, T. Wen, H.L. Guo, S. Yang, X. Wang, A.W. Xu, ACS Nano 7, 3589–3597 (2013)

    Article  Google Scholar 

  16. P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu, Z. Lei, J. Phys. Chem. C 120, 2079–2086 (2016)

    Article  Google Scholar 

  17. Y. Ren, J. Zhang, Q. Xu, Z. Chen, D. Yang, B. Wang, Z. Jiang, RSC Adv. 4, 23412–23419 (2014)

    Article  Google Scholar 

  18. Z. Hao, Y.J. Hu, T. Xing, L.X. Zhong, X.W. Peng, R.C. Sun, Ind. Crop. Prod. 87, 229–235 (2016)

    Article  Google Scholar 

  19. F. Lai, Y.E. Miao, L. Zuo, Y. Zhang, T. Liu, ChemNanoMat 2, 212–219 (2016)

    Article  Google Scholar 

  20. X. Wu, W. Jia, Chem. Eng. J. 245, 210–216 (2014)

    Article  Google Scholar 

  21. A. Yin, F. Xu, X. Zhang, Materials 9, 758 (2016)

    Article  Google Scholar 

  22. L. Zhu, Y. Wang, Y. Wang, L. You, X. Shen, S. Li, Microporous Mesoporous Mater. 241, 285–292 (2017)

    Article  Google Scholar 

  23. H. Yang, Y. Tang, X. Sun, Q. Liu, X. Huang, L. Wang, Z. Fu, Q. Zhang, S.W. Or, J. Mater. Sci.-Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7359-7

    Google Scholar 

  24. M. Yao, N. Wang, J. Yin, W. Hu, J. Mater. Sci-Mater. Electron. 28, 11119–11124 (2017)

    Article  Google Scholar 

  25. E. Zhou, C. Wang, M. Shao, X. Deng, X. Xu, Ceram. Int. 43, 760–765 (2017)

    Article  Google Scholar 

  26. J.C. Groen, L.A.A. Peffer, J. Pérez-RamíRez, Microporous Mesoporous Mater. 60, 1–17 (2003)

    Article  Google Scholar 

  27. T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508–1513 (2015)

    Article  Google Scholar 

  28. L. Liu, X. Yang, C. Lv, A. Zhu, X. Zhu, S. Guo, C. Chen, D. Yang, ACS Appl. Mater. Interfaces 8, 7047–7053 (2016)

    Article  Google Scholar 

  29. Z. Li, Q. Liang, C. Yang, L. Zhang, B. Li, D. Li, J. Mater. Sci.-Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7236-4

    Google Scholar 

  30. J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu, Y. Zhao, K. Ni, Z. Tao, M. Ikram, H. Ji, Adv. Mater. 28, 5222–5528 (2016)

    Article  Google Scholar 

  31. Y. Tan, C. Xu, G. Chen, Z. Liu, M. Ma, Q. Xie, N. Zheng, S. Yao, ACS Appl. Mater. Interfaces 5, 2241–2248 (2013)

    Article  Google Scholar 

  32. D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo, Y. Xia, S. Sun, S. Guo, Angew. Chem. Int. Ed. 55, 15925–15928 (2016)

    Article  Google Scholar 

  33. G. Ye, X. Zhu, S. Chen, D. Li, Y. Yin, Y. Lu, S. Komarneni, D. Yang, J. Mater. Chem. A 5, 8247–8254 (2017)

    Article  Google Scholar 

  34. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219–2251 (2014)

    Article  Google Scholar 

  35. W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, J. Mater. Chem. A 3, 5656–5664 (2015)

    Article  Google Scholar 

  36. H.J. Denisa, K. Masaya, S. Soshi, H. Hiroaki, Z.H. Zhu, G.Q. Lu, Adv. Funct. Mater. 19, 1800–1809 (2010)

    Google Scholar 

  37. B. You, F. Kang, P. Yin, Q. Zhang, Carbon 103, 9–15 (2016)

    Article  Google Scholar 

  38. T. Sun, C. Wang, D. Jiao, M. Zhu, S. Lv, J. Xiang, C. Qin, J. Mater. Sci.-Mater. Electron. 28, 1–10 (2017)

    Google Scholar 

  39. J. Zhou, L. Bao, S. Wu, W. Yang, H. Wang, Carbohyd. Polym. 173, 321–329 (2017)

    Article  Google Scholar 

  40. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Adv. Energy Mater. 2, 381–389 (2012)

    Article  Google Scholar 

  41. L. Zheng, W. Ying, X. Wang, X. Wang, H. An, L. Yi, J. Mater. Sci. 45, 6030–6037 (2010)

    Article  Google Scholar 

  42. A. Noofeli, P.J. Hall, A.J. Rennie, Faraday Discuss. 172, 163–177 (2014)

    Article  Google Scholar 

  43. G.A. Tiruye, D. Muñoz-Torrero, J. Palma, M. Anderson, R. Marcilla, J. Power Sources 279, 472–480 (2015)

    Article  Google Scholar 

  44. A.J. Rennie, V.L. Martins, R.M. Smith, P.J. Hall, Sci. Rep. 6, 22062 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, SWZCL2016-3, Scientific Research Foundation of Zhejiang A&F University (Grant No. 2014FR077), and the Fund for Innovative Research Team of Forestry Engineering Discipline (101-206001000713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingfeng Sun or Yujing Nie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1018 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Wang, H., Jin, C. et al. Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. J Mater Sci: Mater Electron 29, 4334–4344 (2018). https://doi.org/10.1007/s10854-017-8381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8381-5

Navigation