Skip to main content
Log in

Enhanced SAW characteristics of a-plane AlN epitaxial films using ZnO buffer layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-quality a-plane AlN epitaxial films were successfully deposited on r-plane sapphire using a thin ZnO buffer layer for surface acoustic wave (SAW) applications. Structural properties of AlN epitaxial films on different thicknesses of ZnO buffer and the related SAW characteristics were investigated systematically. The results demonstrate that AlN films were epitaxially grown on ZnO buffered-substrate with orientation relationship of \((11\overline {2} 0){\text{ }}[10\overline {1} 0]\) AlN//\((11\overline {2} 0){\text{ }}[10\overline {1} 0]\) ZnO//\((01\overline {1} 2){\text{ }}[\overline {2} 110]\) Al2O3. A thin ZnO buffer layer with moderate thickness significantly facilitated the crystal quality of a-plane AlN films, and in turn enhanced the SAW characteristics. High frequency SAW devices with a center frequency of ~ 1500 MHz corresponding to a high phase velocity of 6000 m/s were achieved on the obtained AlN films. The as-grown a-plane AlN epitaxial films with 40 nm optimized ZnO buffer exhibit high crystal quality with a FWHM value of the rocking curve of 0.76° and good performance of SAW devices with low insertion loss and large out-of-band rejection. This work offers an effective approach to achieve high-quality a-plane AlN epitaxial films on sapphire substrates for the AlN-based SAW devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441, 325–328 (2006)

    Article  Google Scholar 

  2. M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, Y. Ooishi, M. Tsubai, O. Fukuda, Adv. Func. Mater. 17, 458–462 (2007)

    Article  Google Scholar 

  3. A.K. Aissa, N. Semmar, A. Achour, Q. Simon, A. Petit, J. Camus, C. Boulmer-Leborgne, M.A. Djouadi, J. Phys. D 47, 355303 (2014)

    Article  Google Scholar 

  4. X. Jiao, Y. Shi, H. Zhong, R. Zhang, J. Yang, J. Mater. Sci. Mater. Electron. 26(2), 801–808 (2015)

    Article  Google Scholar 

  5. C.-M. Lin, Y.-Y. Chen, V.V. Felmetsger, W.-C. Lien, T. Riekkinen, D.G. Seneskyand, A.P. Pisan, J. Micromech. Microeng. 23, 25019 (2013)

    Article  Google Scholar 

  6. B.R. Fu, F. Wang, R.R. Cao, Y.M. Han, Y.P. Miao, Y.L. Feng, F.L. Xiao, K.L. Zhang, J. Mater. Sci. Mater. Electron. 28, 9295–9300 (2017)

    Article  Google Scholar 

  7. T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, M. Oudich, Appl. Phys. Lett. 96, 203503 (2010)

    Article  Google Scholar 

  8. C. Li, X.Z. Liu, B. Peng, L. Shu, Y.R. Li, Rare Methods 35(5), 408–411 (2016)

    Article  Google Scholar 

  9. J.T. Luo, B. Fan, F. Zeng, F. Pan, J. Phys. D 42, 235406 (2009)

    Article  Google Scholar 

  10. R.S. Naik, J.J. Lutsky, R. Reif, G. Charles, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, Y.-H. Wong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 292–296 (2000)

    Article  Google Scholar 

  11. J. Wang, Q. Zhang, G.F. Yang, C.J. Yao, Y.J. Li, R. Sun, J.L. Zhao, S.M. Gao, J. Mater. Sci. Mater. Electron 27(3), 3026–3032 (2016)

    Article  Google Scholar 

  12. H. Yang, W.L. Wang, Z.L. L, G.Q. Li, CrystEngComm 15, 7171 (2013)

    Article  Google Scholar 

  13. S. Wu, R. Ro, Z.-X. Lin, M.-S. Lee, Appl. Phys. Lett. 94, 092903 (2009)

    Article  Google Scholar 

  14. S. Wu, R. Ro, Z.-X. Lin, M.-S. Lee, J. Appl. Phys. 104, 64919 (2008)

    Article  Google Scholar 

  15. T. Yanagitani, M. Kiuch, Proceedings of IEEE Ultrasonics Symposium, pp. 90–93 (2008)

  16. K. Tsubouchi, K. Sugai, N. Mikoshiba, Proceedings of IEEE Ultrasonics Symposium, pp. 375–380 (1981)

  17. K. Uehara, M.C. Yang, T. Shibata, S.-K. Kim, S. Kameda, H. Nakas, K. Tsubouchi, Proceedings of IEEE Ultrasonics Symposium, pp. 203–206 (2004)

  18. K. Ueno, A. Kobayashi, J. Ohta, H. Fujioka, Appl. Phys. Lett. 91, 81915 (2007)

    Article  Google Scholar 

  19. R.D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 70, 2735 (1997)

    Article  Google Scholar 

  20. X.Q. Meng, C.T. Yang, Q.Q. Chen, Y. Gao, J.C. Yang, Mater. Lett. 90, 49–52 (2013)

    Article  Google Scholar 

  21. H.-G. Chen, S.-R. Jian, H.-L. Kao, M.-R. Chen, G.-Z. Huang, Thin Solid Films 519, 5090–5094 (2011)

    Article  Google Scholar 

  22. C.-H. Lin, Y. Yamashita, H. Miyake, K. Hiramatsu, J. Cryst. Growth 468, 845–850 (2016)

    Article  Google Scholar 

  23. S.K. Han, S.K. Hong, J.Y. Lee, J.H. Song, J.Y. Song, Y.S. Nam, S.K. Chang, T. Minegishi, T. Yao, J. Cryst. Growth 309, 121–127 (2007)

    Article  Google Scholar 

  24. A. Ababneh, M. Alsumady, H. Seidel, T. Manzaneque, J. Hernando-García, J.L. Sánchez-Rojas, A. Bittner, U. Schmid, Appl. Surf. Sci. 259, 59–65 (2012)

    Article  Google Scholar 

  25. X.H. Xu, H.S. Wu, C.J. Zhang, Z.H. Jin, Thin Solid Films 388, 62–67 (2001)

    Article  Google Scholar 

  26. L.R. Qian, C.P. Li, M.J. Li, F. Wang, B.H. Yang, Appl. Phys. Lett. 105, 183501 (2014)

    Article  Google Scholar 

  27. A. Sanz-Hervás, M. Clement, E. Iborra, L. Vergara, J. Olivares, J. Sangrador, Appl. Phys. Lett. 88, 161915 (2006)

    Article  Google Scholar 

  28. F. Martin, P. Muralt, A.-M. Dubois, A. Pezous, J. Vac. Sci. Technol. A 22, 361–365 (2004)

    Article  Google Scholar 

  29. M. Clement, J. Olivares, J. Capilla, J. Sangrador, E. Iborra, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 128–134 (2012)

    Article  Google Scholar 

  30. S.L. Fu, Q. Li, S. Gao, G.Y. Wang, F. Zeng, F. Pan, Appl. Surf. Sci. 402, 392–399 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (Grant No. 2016XFB0402700) and Beijing Science and Technology Project (No. D171100004617001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Zeng or Feng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Li, Q., Wang, M. et al. Enhanced SAW characteristics of a-plane AlN epitaxial films using ZnO buffer layer. J Mater Sci: Mater Electron 29, 3912–3919 (2018). https://doi.org/10.1007/s10854-017-8330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8330-3

Navigation