Skip to main content

Advertisement

Log in

Structural, dielectric and impedance study of Bi and Li co-substituted Ba0.50Sr0.50TiO3 ceramics for tunable microwave devices applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, the structural, dielectric and electrical properties of Bi and Li co-substituted (Ba, Sr) site in Ba0.50Sr0.50TiO3 ceramics are presented. Four different compositions of Ba0.50Sr0.50TiO3, (Ba0.50Sr0.50)0.98(Bi, Li)0.02TiO3, (Ba0.50Sr0.50)0.96(Bi, Li)0.04TiO3, and (Ba0.50Sr0.50)0.92(Bi, Li)0.08TiO3 were synthesized using solid-state reaction with microwave heating of starting materials. Phase detection for all samples has been examined by XRD along with Rietveld refinement analyses, and the results show the formation of single phase without observation of any secondary phase. However, a decrease in crystallite size, lattice parameters, and unit cell volume has been observed with the increase of Bi and Li concentration. A Dense microstructure with different grains sizes and shapes has been obtained by scanning electron microscopy. Impedance spectroscopy in the temperature range of 30–300 °C and frequency range of 60 Hz–1 MHz has been used to study the dielectric properties. The result shows that the Bi and Li co-substituted Ba0.5Sr0.5TiO3 ceramics exhibit very interesting features, such as enhanced dielectric constant with low loss which make it suitable for microwave tunable devices applications. An electric impedance analysis was carried out at different temperatures namely (400, 450, 500, and 550 °C). A single semicircular arc with single relaxation process has been observed in all studied samples which suggest that the grains contribute to the total resistance in these materials. The activation energy was obtained from the impedance analysis using Arrhenius plot of grain conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Tagantsev, V.O. Sherman, K.F. Astaev, J. Venkatesh, N. Setter, J. Electroceram. 11, 5–66 (2003)

    Article  Google Scholar 

  2. E.A. Nenasheva, A.D. Kanareykin, N.F. Kartenko, A.I. Dedyk, S.F. Karmanenko, J. Electroceram. 13, 235–238 (2004)

    Article  Google Scholar 

  3. M.W. Cole, C. Hubbard, E. Ngo, M. Ervin, M. Wood, R.G. Geyer, J. Appl. Phys. 92, 475–483 (2002)

    Article  Google Scholar 

  4. B. Su, T.W. Button, J. Appl. Phys. 95, 1382–1385 (2004)

    Article  Google Scholar 

  5. J. Pundareekam Goud, S. Ramakanth, A. Joseph, K. Sandeep, G. Lakshminarayana Rao, K.C. James Raju, Thin Solid Films 626,126–130 (2017)

    Article  Google Scholar 

  6. K. Sandeep, J. Pundareekam Goud, K.C. James Raju, Appl. Phys. Lett. 111, 012901 (2017)

    Article  Google Scholar 

  7. W.J. Kim, W. Chang, S.B. Qadri, J.M. Pond, S.W. Kirchoefer, D.B. Chrisey, J.S. Horwitz, Appl. Phys. Lett. 76, 1185–1187 (2000)

    Article  Google Scholar 

  8. G. Subramanyam, M.W. Cole, N.X. Sun, J. Appl. Phys. 114, 191301 (2013)

    Article  Google Scholar 

  9. L.C. Sengupta, S. Sengupta, Mater. Res. Innov. 2, 278–282 (1999)

    Article  Google Scholar 

  10. J.W. Wang, C. Xu, B. Shen, J.W. Zhai, J. Mater. Sci. 24, 3309–3314 (2013)

    Google Scholar 

  11. S.B. Herner, F.A. Selmi, V.V. Varadan, V.K. Varadan, Mater. Lett. 15, 317–324 (1993)

    Article  Google Scholar 

  12. T. Hu, T.J. Price, D.M. Iddles, A. Uusimaki, H. Jantumen, J. Eur. Ceram. Soc. 25, 2531–2535 (2005)

    Article  Google Scholar 

  13. S. Garcia, R. Font, J. Portelles, R.J. Quinones, J. Heiras, J.M. Siqueiros, J. Electroceram. 6, 101–108 (2001)

    Article  Google Scholar 

  14. K.T. Kim, C. Kim, Thin Solid Films 472, 26–30 (2004)

    Article  Google Scholar 

  15. J.K. Kim, S.S. Kim, W.J. Kim, T.G. Ha, I.S. Kim, J.S. Song, R. Guo, A.S. Bhalla, Mater. Lett. 60, 2322–2325 (2006)

    Article  Google Scholar 

  16. C.S. Liang, J.M. Wu, J. Cryst. Growth 274, 173–177 (2005)

    Article  Google Scholar 

  17. S.G. Lee, D.S. Kang, Mater. Lett. 57, 1629–1634 (2003)

    Article  Google Scholar 

  18. A. Beitollahi, S.A. Mortazavi, J. Mater. Sci.:Mater. Electron 14(3), 129–134 (2003)

    Google Scholar 

  19. S.F. Wang, O.D. Gordon, J. Am. Ceram. Soc. 82(10), 2677–2682 (1999)

    Article  Google Scholar 

  20. X.Y. Huang, J. Li, C.H. Gao, Z.G. Chen, J. Chin. Ceram. Soc. 33(3), 402–406 (2005)

    Google Scholar 

  21. X.Y. Huang, Z.G. Chen, J. Li, C.H. Gao, J. Synth. Cryst. 35(3), 623–626C634 (2006) (in Chinese)

    Google Scholar 

  22. X.Y. Huang, C.H. Gao, M.Q. Pan, H. Guan, X.T. Zhu, Chin. J. Sci. Instrum. 26(11), 1127–1129 (2005) (in Chinese)

    Google Scholar 

  23. X.Y. Huang, B. Niu, X.X. Jiang, K.H. Shi, J. Jiangsu Univ. Sci. Technol. (Nat. Sci.) 22(1), 66–70 (2001) (in Chinese)

    Google Scholar 

  24. X.Y. Huang, C.H. Gao, Chin. J. Sci. Instrum. 24(1), 45–48 (2003) (in Chinese)

    Google Scholar 

  25. M.S. Alkathy, K.C. James Raju, J Mater Sci: Mater Electron. 27, 8957–8965 (2016)

    Google Scholar 

  26. M.S. AlKathy, R. Gayam, K.C. James Raju, Ceram. Int. 42, 15432–15441 (2016)

    Article  Google Scholar 

  27. J. Zhang, L. Ji, X. Jia, J. Wang, J. Zhai, Y. Zhou, J. Am. Ceram. Soc. 98(1), 97–103 (2015)

    Article  Google Scholar 

  28. A.S. Attar, E.S. Sichani, S. Sharaf, J. Mater. Res. Technol. 6(2), 108–115 (2017)

    Article  Google Scholar 

  29. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  30. Y.I. Yuzyuk, Phys. Solid State 54, 1026 (2012)

    Article  Google Scholar 

  31. S.Y. Wang, B.L. Cheng, C. Wang, S.Y. Dai, K.J. Jin, Y.L. Zhou, H.B. Lu, Z.H. Chen, G.Z. Yang, J. Appl. Phys. 99, 013504 (2006)

    Article  Google Scholar 

  32. R. Naik, et.al, Phys. Rev. B 61, 11367 (2000)

    Article  Google Scholar 

  33. L.Z. Cao, et.al, J. Phys. D 39, 2819 (2006)

    Article  Google Scholar 

  34. R.L. Fullman, Trans. AIME 197, 447–452 (1953)

    Google Scholar 

  35. M.S. Alkathy, K.K. Bokinala, K.C. James Raju, J. Mater. Sci.: Mater. Electron. 27, 3175–3181 (2016)

    Google Scholar 

  36. M.N. Rahman, Ceramic Processing and Sintering (Marcel Dekker, Inc., New York, 1995)

    Google Scholar 

  37. A. von Hippel, Dielectrics and Waves (Artech House, Boston, 1995)

    Google Scholar 

  38. A. von Hippel, Rev. Mod. Phys. 22, 221–245 (1950)

    Article  Google Scholar 

  39. L. Davis, L.G. Rubin, J. Appl. Phys. 24, 1194–1197 (1953)

    Article  Google Scholar 

  40. H. Abrams, Metallography 4(1), 59–78 (1971)

    Article  Google Scholar 

  41. B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys 104, 064123 (2008)

    Article  Google Scholar 

  42. M.S. Alkathy, R. Gayam, K.C. James Raju, J. Mater. Sci.: Mater. Electron. 28, 1684–1694 (2017)

    Google Scholar 

  43. A. Tkach, O. Okhay, P.M. Vilarinho, A.L. Kholkin, J. Phys. Condens. Matter 20, 415224 (2008)

    Article  Google Scholar 

  44. S. Selvasekarapandian, M. Vijaykumar, Mater. Chem. Phys. 80, 29 (2003)

    Article  Google Scholar 

  45. P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, J. Phys. Chem. Solids 74, 545–549 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the facilities provided by UGC, DST, and DRDO at University of Hyderabad. We thank Mr. Binoy, School of Physics, University of Hyderabad for helping in Electrical measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. James Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pundareekam Goud, J., Alkathy, M.S. & James Raju, K.C. Structural, dielectric and impedance study of Bi and Li co-substituted Ba0.50Sr0.50TiO3 ceramics for tunable microwave devices applications. J Mater Sci: Mater Electron 29, 3611–3620 (2018). https://doi.org/10.1007/s10854-017-8291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8291-6

Navigation