Skip to main content
Log in

Influences of donor defect passivation on the performance of Cu(In,Ga)Se2 thin-film solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the study of donor defect passivation in CIGS solar cell was simulated by wxAMPS software. The effects of near-interface shallow donor defect and bulk donor defect on the performances of solar cell were investigated mainly through changing the state densities and their position distributions. The results show that the high density of the near-interface shallow donor defect state decreases the open circuit voltage. By contrast, the low density of the near-interface shallow donor defect state has the higher open circuit voltage and short-circuit current density. But it easily leads to the CdS conduction band offset increased, then raising carrier recombination rate which decreases the fill factor. For the passivation of the bulk donor defect in the absorption layer, the performances of the CIGS solar cell are much dependent on the position distribution of donor defect state density. Among them, the decrease of the state density in the space charge region can improve the open-circuit voltage. Meanwhile, the reduction of the state density in the quasi-neutral region can increase the short-circuit current density. With the bulk donor defect state density decreased, the conversion efficiency will saturate due to the limitation of the acceptor concentration. When the donor defect state density is low enough, the influence of capture cross section on the device performance is reduced. The conversion efficiencies varying with passivation region were compared from two directions (CdS to Mo and Mo to CdS). It was found the passivation of the donor defect in the transition region where the position from the quasi-neutral region to the space charge region in the absorption was critical to the improvement in the conversion efficiency of the solar cell under a suitable alkali element concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.L. Liu, Y. Feng, H.T. Cui, F.Y. Liu, G. Conibeer, D.B. Mitzi, M. Green, Prog. Photovolt. 24, 879 (2016)

    Article  Google Scholar 

  2. M. Saadat, M. Moradi, M. Zahedifar, J. Mater. Sci.: Mater. Electron. 27, 1130–1133 (2016)

    Google Scholar 

  3. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi RRL 10, 583 (2016)

    Article  Google Scholar 

  4. P.M.P. Salomé, H. Rodriguez-Alvarez, S. Sadewasser, Sol. Energy Mater. Sol. Cells 143, 9 (2015)

    Article  Google Scholar 

  5. D. Rudmann, G. Bilger, M. Kaelin, F.J. Haug, H. Zogg, A.N. Tiwari, Thin Solid Films 431, 37 (2003)

    Article  Google Scholar 

  6. S. Ishizuka, A. Yamada, M.M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, S. Niki, J. Appl. Phys. 106, 034908 (2009)

    Article  Google Scholar 

  7. D.W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B.J. Tielsch, J.E. Fulghum, J. Vac. Sci. Technol. A 15, 3044 (1997)

    Article  Google Scholar 

  8. R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hessea, T. Unolda, A. Eicke, R. Klenka, H. W. Schockal, Thin Solid Films 517, 2187 (2009)

    Article  Google Scholar 

  9. H.H. Sung, D.C. Tsai, Z.C. Chang, S.C. Liang, F.S. Shieu, Mater. Sci. Semicond. Process. 39, 79 (2015)

    Article  Google Scholar 

  10. X.L. He, J. Liu, Q.Y. Ye, K. Luo, Y.D. Jiang, C. Liao, L.Q. Ouyang, D.M. Zhuang, J. Mei, W.M. Lau, J Alloy Compd. 658, 12 (2016)

    Article  Google Scholar 

  11. S.H. Wei, S.B. Zhang, A. Zunger, J. Appl. Phys. 85, 7214 (1999)

    Article  Google Scholar 

  12. Z. Djebbour, A. Darga, A. Migan Dubois, D. Mencaraglia, N. Naghavi, J.F. Guillemoles, D. Lincot, Thin Solid Films 511–512, 320 (2006)

    Article  Google Scholar 

  13. Q. Cao, O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, D.B. Mitzi, Adv. Energy Mater. 1, 845 (2011)

    Article  Google Scholar 

  14. S. Chen, T. Jarmar, S. Södergren, U. Malm, E. Wallin, O. Lundberg, S. Jander, R. Hunger, L. Stolt, Thin Solid Films 582, 35 (2015)

    Article  Google Scholar 

  15. R. Farshchi, B. Hickey, G. Zapalac, J. Bailey, D. Spaulding, D. Poplavskyy 43th IEEE Photovoltaic Specialists Conference (PVSC) (2016), pp. 2157–2160

  16. D. Rudmann, D. Bre´maud, A.F. Da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg, A.N. Tiwari, Thin Solid Films 480–481, 55 (2005)

    Article  Google Scholar 

  17. M. Gloeckler, A.L. Fahrenbruch, J.R. Sites, 3rd World Conference on Photovoltaic Energy Conversion (2003), p. 491–494

  18. Y.M. Liu, Y. Sun, A. Rockett, Sol. Energy Mater. Sol. Cells 98, 124 (2012)

    Article  Google Scholar 

  19. S. Yaşar, S. Kahraman, S. Çetinkaya, Ş Apaydın, İ Bilican, İ. Uluer, Optik 127, 8827 (2016)

    Article  Google Scholar 

  20. P. Zabierowski, M. Edoff, Thin Solid Films 480–481, 301 (2005)

    Article  Google Scholar 

  21. T. Sakurai, N. Ishida, S. Ishizuka, M.M. Islam, A. Kasai, K. Matsubara, K. Sakurai, A. Yamada, K. Akimoto, S. Niki, Thin Solid Films 516, 7036 (2008)

    Article  Google Scholar 

  22. W.K. Metzger, M. Gloeckler, J. Appl. Phys 98, 063701 (2005)

    Article  Google Scholar 

  23. L. Oppong-Antwi, S.H. Huang, Q.N. Li, D. Chi, X.Q. Meng, L. He, Sol. Energy 141, 222 (2017)

    Article  Google Scholar 

  24. A. Rockett, Thin Solid Films 480–481, 2 (2005)

    Article  Google Scholar 

  25. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001)

    Article  Google Scholar 

  26. R.A. Street, M. Schoendorf, Phys Rev B 81, 205307 (2010)

    Article  Google Scholar 

  27. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, Phys. Rev. B 81, 125204 (2010)

    Article  Google Scholar 

  28. K. Kaur, N. Kumar, M. Kumar, J. Mater. Chem. A 5, 3069 (2017)

    Article  Google Scholar 

  29. M. Saadat, M. Moradi, M. Zahedifar, Superlattices Microstruct. 92, 303 (2016)

    Article  Google Scholar 

  30. F. Tahvilzadeh, N. Rezaie, Opt. Quant. Electron. 48, 104 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by National Science Foundation of China (NSFC Nos. 61574009 and 11574014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, T., Chen, Y. et al. Influences of donor defect passivation on the performance of Cu(In,Ga)Se2 thin-film solar cell. J Mater Sci: Mater Electron 29, 3482–3491 (2018). https://doi.org/10.1007/s10854-017-8282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8282-7

Navigation