Skip to main content
Log in

Analytical thermal stress model for a typical flip-chip (FC) package design

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple analytical thermal stress model is suggested for a typical flip-chip (FC) lidded package design. The model is based on the concept of the interfacial compliance. The addressed design consists of a silicon FC bonded to an organic substrate and covered by a lid. The lid is configured in such a way that its mid-portion is bonded to the back side of the chip using a thermal interface material (a heat sink is intended to be subsequently mounted on the outer surface of the lid) and the lid’s peripheral portions are adhesively bonded to the same substrate using compliant attachments around the lid’s perimeter. A copper lid and a (hypothetical) organic lid are considered to develop a general feeling of the possible stress relief that could be expected if an organic lid is employed. The in-plane compliances of all the attachments, including the effective compliance of the encapsulated solder joint interconnections, are taken into account. A numerical example shows how the model could be used in practical computations. It shows also that the application of an organic lid, although is less attractive from the standpoint of the thermal management of the design, might result in appreciably lower thermal stresses. This is true for both the normal stresses in the chip’s cross-sections and the maximum interfacial shearing stresses at the chip’s ends. The developed model can be employed in the analysis of a FC package design of the type in question. Future work should include FEA verifications, and the suggested analytical stress model can be of help when developing a FEA preprocessing simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.A. Lang et al., Thermal fatigue in silicon power devices. IEEE Trans. Electron Devices, 17, 787–793 (1970)

    Article  Google Scholar 

  2. E. Suhir, in Advances in Thermal Modeling of Electronic Components and Systems, ed. by A. Bar-Cohen, A. D. Kraus. Thermal Stress Failures in Microelectronic Components—Review and Extension, (Hemisphere, New York, 1988)

    Google Scholar 

  3. J.H. Lau (ed.), Thermal Stress and Strain in Microelectronics Packaging. (Van-Nostrand Reinhold, New York, 1993)

    Google Scholar 

  4. S. Timoshenko, Analysis of Bi-metal thermostats. J. Opt. Soc. Am. 11, 223–255 (1925)

    Article  Google Scholar 

  5. B.J. Aleck, Thermal stresses in a rectangular plate clamped along an edge. ASME J. Appl. Mech. 16, 118–122 (1949)

    Google Scholar 

  6. B.A. Boley, J.H. Weiner, Theory of Thermal Stresses. (Quantum Publishers, New York, 1974)

    Google Scholar 

  7. E. Suhir, Analytical thermal stress modeling in electronic and photonic systems. ASME App. Mech. Reviews, invited paper, vol. 62, 4 (2009)

  8. E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems”, vol.1, Basic Principles of Engineering Elasticity and Fundamentals of Structural Analysis. (Van Nostrand Reinhold, New York, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Suhir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhir, E. Analytical thermal stress model for a typical flip-chip (FC) package design. J Mater Sci: Mater Electron 29, 2676–2688 (2018). https://doi.org/10.1007/s10854-017-8194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8194-6

Navigation