Skip to main content
Log in

Surface modification of ZnO nanorods with CdS quantum dots for application in inverted organic solar cells: effect of deposition duration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Incorporating cadmium sulfide quantum dots (CdS QDs) onto ZnO nanorod (ZNRs) has been investigated to be an efficient approach to enhance the photovoltaic performance of the inverted organic solar cell (IOSC) devices based on ZNRs/poly (3-hexylthiophene) (P3HT). To synthesize CdS/ZNRs, different durations of deposition per cycle from 1 to 9 min were used to deposit CdS via SILAR technique onto ZNRs surface grown via hydrothermal method at low temperature on FTO substrate. In typical procedures, P3HT as donor polymer were spun-coating onto CdS/ZNRs to fabricate IOSC devices, followed by Ag deposition as anode by magnetron sputtering technique. Incorporation of CdS QDs has modified the morphological, structural, and optical properties of ZNRs. Incorporation of CdS QDs onto ZNRs also led to higher open circuit voltage (Voc) and short circuit current density (Jsc) of optimum ZNRs/CdS QDs devices due to the increased interfacial area between ZNRs and P3HT for more efficient exciton dissociation, reduced interfacial charge carrier recombination as a result of lower number of oxygen defects which act as electron traps in ZnO and prolonged carrier recombination lifetime. Therefore, the ZNRs/CdS QDs/P3HT device exhibited threefold higher PCE (0.55%) at 5 min in comparison to pristine ZNR constructed device (0.16%). Overall, our study highlights the potential of ZNRs/CdS QDs to be excellent electron acceptors for high efficiency hybrid optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Xue, Polym. Rev. 50, 411–419 (2010)

    Article  Google Scholar 

  2. S. Wu, J. Li, S.-C. Lo, Q. Tai, F. Yan, Org. Electron. 13, 1569–1575 (2012)

    Article  Google Scholar 

  3. P. Ruankham, S. Yoshikawa, T. Sagawa, Phys. Chem. Chem. Phys. 15, 9516–9522 (2013)

    Article  Google Scholar 

  4. J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861 (2011)

    Article  Google Scholar 

  5. X. Wang, F. Chen, J. Mater. Sci.-Mater. Eectron. 26, 1125–1128 (2015)

    Article  Google Scholar 

  6. L. Baeten, B. Conings, H.G. Boyen, J. D’Haen, A. Hardy, M. D’Olieslaeger, Adv. Mater. 23, 2802–2805 (2011)

    Article  Google Scholar 

  7. S.T. Tan, A.A. Umar, M. Mat Salleh, M. Yahaya, C.C. Yap, H.-Q. Ngyuen, C.F. Dee, E.Y. Chang, M. Oyama, Sci. Adv. Mater. 5 803–809 (2013)

    Article  Google Scholar 

  8. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430–4431 (2003)

    Article  Google Scholar 

  9. D.C. Olson, Y.-J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J. Phys. Chem. C 111, 16640–16645 (2007)

    Article  Google Scholar 

  10. P. Ruankham, T. Sagawa, H. Sakaguchi, S. Yoshikawa, J. Mater. Chem. 21, 9710–9715 (2011)

    Article  Google Scholar 

  11. A. Said, G. Poize, C. Martini, D. Ferry, W. Marine, S. Giorgio, J. Phys. Chem. C 114, 11273–11278 (2010)

    Article  Google Scholar 

  12. H.F. Oleiwi, A. Zakaria, C.C. Yap, H.A. Abbas, S.T. Tan, H.B. Lee, AIP Conf. Proc. 1838, 020007 (2017)

    Article  Google Scholar 

  13. D. Bi, F. Wu, Q. Qu, W. Yue, Q. Cui, W. Shen, J. Phys. Chem. C 115, 3745–3752 (2011)

    Article  Google Scholar 

  14. H.F. Oleiwi, S.T. Tan, H.B. Lee, C.C. Yap, R.T. Ginting, A. Zakaria, RSC Adv. 6, 52395–52402 (2016)

    Article  Google Scholar 

  15. Q. Cui, C. Liu, F. Wu, W. Yue, Z. Qiu, H. Zhang, J. Phys. Chem. C 117, 5626–5637 (2013)

    Article  Google Scholar 

  16. L. Wang, D. Zhao, Z. Su, B. Li, Z. Zhang, D. Shen, J. Electrochem. Soc 158, 804–807 (2011)

    Article  Google Scholar 

  17. D. Spoerke, M.T. Lloyd, E.M. McCready, D.C. Olson, Y.-J. Lee, J.W.P. Hsu, Appl. Phys. Lett. 95, 213506 (2009)

    Article  Google Scholar 

  18. C.-Z. Yao, B.-H. Wei, L.-X. Meng, H. Li, Q.-J. Gong, H. Sun, J. Power Sources 207, 222–228 (2012)

    Article  Google Scholar 

  19. B. Sun, Y. Hao, F. Guo, Y. Cao, Y. Zhang, Y. Li, J. Phys. Chem. C 116, 1395–1400 (2012)

    Article  Google Scholar 

  20. T.S. Tee, T.C. Hui, C.W. Yi, Y.C. Chin, A.A. Umar, G.R. Titian, Sensor Actuat. B 227, 304–312 (2016)

    Article  Google Scholar 

  21. M. Guo, P. Diao, S. Cai, J. Solid State Chem. 178, 1864–1873 (2005)

    Article  Google Scholar 

  22. W. Chen, H. Li, L. Liu, Zhu, Sol. Energy 84, 1201–1207 (2010)

    Article  Google Scholar 

  23. Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Cryst. Growth Des. 9, 2627–2632 (2009)

    Article  Google Scholar 

  24. H. Li, C. Yao, L. Meng, H. Sun, J. Huang, Q. Gong, Electrochim. Acta 108, 45–50 (2013)

    Article  Google Scholar 

  25. L.E. Brus, J. Chem. Phys. 80, 4403–4409 (1984)

    Article  Google Scholar 

  26. H.K. Jun, M.A. Careem, A.K. Arof, Int. J. Photoenergy 2014, 1–14 (2014)

    Article  Google Scholar 

  27. M. Kim, D.H. Kim, K. Yim, S.K. Kim, A. Nam, A. Kim, Bull. Korean Chem. Soc. 33, 189–193 (2012)

    Article  Google Scholar 

  28. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, Angew. Chem. Int. Ed. 42, 3031–3034 (2003)

    Article  Google Scholar 

  29. J. Li, L.L. Kerr, Opt. Mater. 35, 1213–1217 (2013)

    Article  Google Scholar 

  30. R. Cross, M. De Souza, E.S. Narayanan, Nanotechnology 16, 2188 (2005)

    Article  Google Scholar 

  31. M. Willander, O. Nur, Q. Zhao, L. Yang, M. Lorenz, B. Cao, Nanotechnology 20, 332001 (2009)

    Article  Google Scholar 

  32. F. Fang, D. Zhao, B. Li, Z. Zhang, J. Zhang, D. Shen, Appl. Phys. Lett. 93, 233115 (2008)

    Article  Google Scholar 

  33. M. Villani, D. Calestani, L. Lazzarini, L. Zanotti, R. Mosca, A. Zappettini, J. Mater. Chem. 22, 5694–5699 (2012)

    Article  Google Scholar 

  34. E.D. Spoerke, M.T. Lloyd, E.M. McCready, D.C. Olson, Y.-J. Lee, J.W. Hsu, Appl. Phys. Lett. 95, 213506 (2009)

    Article  Google Scholar 

  35. P. Kundu, P.A. Deshpande, G. Madras, N. Ravishankar, J. Mater. Chem. 21, 4209–4216 (2011)

    Article  Google Scholar 

  36. T. Gao, Q. Li, T. Wang, Chem. Mater. 17, 887–892 (2005)

    Article  Google Scholar 

  37. S.T. Tan, A.A. .Umar, M. Mat Salleh, J. Alloys Compd. 650, 299–304 (2015)

    Article  Google Scholar 

  38. B. Conings, L. Baeten, H.-G. Boyen, J. D’Haen, M.K. Van Bael, J.V. Manca, J. Phys. Chem. C 116, 14237–14242 (2012)

    Article  Google Scholar 

  39. R.T. Ginting, C.C. Yap, M. Yahaya, M. Mat, Salleh, ACS Appl. Mater. Interfaces 6, 5308–5318 (2014)

    Article  Google Scholar 

  40. C. Renaud, S.J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury, D. Deribew, Adv. Mater. 24, 2196–2201 (2012)

    Article  Google Scholar 

  41. Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, C.-W. Chen, Appl. Phys. Lett. 94, 063308 (2002)

    Article  Google Scholar 

  42. J. Chen, F. Hsu, Y. Sung, Y. Chen, J. Mater. Chem. 22, 15726–15731 (2012)

    Article  Google Scholar 

  43. N.K. Elumalai, T.M. Jin, V. Chellappan, R. Jose, S.K. Palaniswamy, S. Jayaraman, ACS Appl. Mater. Interfaces 5, 9396–9404 (2013)

    Article  Google Scholar 

  44. P.J. Brown, D.S. Thomas, A. Köhler, J.S. Wilson, J.-S. Kim, C.M. Ramsdale, Phys. Rev. B 67, 064203 (2003)

    Article  Google Scholar 

  45. C.-Y. Chou, J.-S. Huang, C.-H. Wu, C.-Y. Lee, C.-F. Lin, Sol. Energy Mater. Sol. C 93, 1608–1612 (2009)

    Article  Google Scholar 

  46. J. Weickert, F. Auras, T. Bein, L. Schmidt-Mende, J. Phys. Chem. C 115, 15081–15088 (2011)

    Article  Google Scholar 

  47. R.T. Ginting, C.C. Yap, M. Yahaya, M. Mat, Salleh, J. Alloy Compd. 585, 696–702 (2014)

    Article  Google Scholar 

  48. Y.-Y. Lin, C.-W. Chen, T.-H. Chu, W.-F. Su, C.-C. Lin, C.-H. Ku, J. Mater. Chem. 17, 4571–4576 (2007)

    Article  Google Scholar 

  49. R.T. Ginting, H.B. Lee, S.T. Tan, C.H. Tan, M.H.H. Jumali, C.C. Yap, J. Phys. Chem. C 120, 771–780 (2016)

    Article  Google Scholar 

  50. A. Pivrikas, R. Österbacka, G. Juška, K. Arlauskas, H. Stubb, Synth. Met 155, 242–245 (2005)

    Article  Google Scholar 

  51. A. Kumar, H.-H. Liao, Y. Yang, Org. Electron. 10, 1615–1620 (2009)

    Article  Google Scholar 

  52. G. Juška, K. Arlauskas, M. Viliūnas, K. Genevičius, R. Österbacka, H. Stubb, Phys. Rev. B 62, 16235 (2000)

    Article  Google Scholar 

  53. C. Guanying, J. Seo, C. Yang, P.N. Prasad, Chem. Soc. Rev. 42, 8304–8338 (2013)

    Article  Google Scholar 

  54. T. Xu, Q. Qiao, Energy Environ. Sci. 4, 2700–2720 (2011)

    Article  Google Scholar 

  55. C.M. Proctor, T.-Q. Nguyen, Appl. Phys. Lett. 106, 083301 (2015)

    Article  Google Scholar 

  56. C.Z. Li, C.Y. Chang, Y. Zang, H.X. Ju, C.C. Chueh, P.W. Liang, Adv. Mater. 26, 6262–6267 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge the financial support for this study from the Fundamental Research Grant Scheme (FRGS) of Project No. 01-02-13-1345FR. The authors might want to thank the help managed by School of Applied Physics, Universiti Kebangsaan Malaysia in various characterizations of samples all through this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azmi Zakaria or Chi Chin Yap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleiwi, H.F., Zakaria, A., Yap, C.C. et al. Surface modification of ZnO nanorods with CdS quantum dots for application in inverted organic solar cells: effect of deposition duration. J Mater Sci: Mater Electron 29, 2601–2609 (2018). https://doi.org/10.1007/s10854-017-8185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8185-7

Navigation