Skip to main content
Log in

Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epoxy resin coating with hybrid carbonyl iron (CI)/Ti3SiC2 absorbent is fabricated on aluminium alloy plate. The phase compositions are identified by X-ray diffraction (XRD) and the morphology is characterized by scanning electron microscope (SEM). Electromagnetic and microwave absorption properties of the single layer and double layer CI/Ti3SiC2/epoxy resin coating are investigated in the frequency range from 8.2 to 12.4 GHz. For the hybrid CI/Ti3SiC2 filler, the complex permittivity increases while the complex permeability declines with the rising Ti3SiC2 content. The single layer coating with 20 wt.% Ti3SiC2 and 80 wt.% CI presents the most desirable microwave absorption properties owing to the synergistic effect of dielectric and magnetic loss mechanism. The double layer coating using CI as the matching layer, 20 wt.% Ti3SiC2 and 80 wt.% CI as the dissipating layer, presents better absorption performance than the single layer microwave absorption coating. When the matching layer is 0.6 mm and the dissipating layer is 1.8 mm, the most favorable absorption bandwidth is obtained in the frequency range of 8.5–12.4 GHz with a minimum value of − 18.9 dB at 10.38 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the Ni–Zn ferrite nanofibers. J. Alloys Compd. 627, 367–373 (2015)

    Article  Google Scholar 

  2. S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee, T.C. Goel, Complex permittivity and microwave absorption properties of a composite dielectric absorber. Compos. A 37(11), 2148–2154 (2006)

    Article  Google Scholar 

  3. G. Mu, N. Chen, X. Pan, H. Shen, M. Gu, Preparation and microwave absorption properties of barium ferrite nanorods. Mater. Lett. 62(6–7), 840–842 (2008)

    Article  Google Scholar 

  4. G. Mu, H. Shen, J. Qiu, M. Gu, Microwave absorption properties of composite powders with low density. Appl. Surf. Sci. 253(4), 2278–2281 (2006)

    Article  Google Scholar 

  5. X. Su, J. Zhang, Y. Jia, Y. Liu, J. Xu, J. Wang, Preparation and microwave absorption property of nano onion-like carbon in the frequency range of 8.2–12.4 GHz. J. Alloys Compd. 695, 1420–1425 (2017)

    Article  Google Scholar 

  6. D.L. Zhao, Z.M. Shen, Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21–22), 3704–3706 (2008)

    Article  Google Scholar 

  7. X. Qi, Y. Yang, W. Zhong, Y. Deng, C. Au, Y. Du, Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities. J. Solid State Chem. 182(10), 2691–2697 (2009)

    Article  Google Scholar 

  8. Z. Peng, J. Peng, Y. Peng, Y. Ou, Y. Ning, Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study. Phys. Lett. A 372(20), 3714–3718 (2008)

    Article  Google Scholar 

  9. H. Pang, M. Fan, Z. He, A method for analyzing the microwave absorption properties of magnetic materials. J. Magn. Magn. Mater. 324(16), 2492–2495 (2012)

    Article  Google Scholar 

  10. R.B. Yang, W.F. Liang, C.W. Lou, J.H. Lin, Electromagnetic and microwave absorption properties of magnetic stainless steel powder in 2–18 GHz. J. Appl. Phys. 111(111) 07A338 (2012)

    Article  Google Scholar 

  11. C.R. Martins, R. Faez, M.C. Rezende, M.A.D. Paoli, Microwave absorption properties of a conductive thermoplastic blend based on polyaniline. Polym. Bull. 51(51), 321–326 (2004)

    Article  Google Scholar 

  12. V.T. Truong, A.R. Codd, M. Forsyth, Dielectric properties of conducting polymer composites at microwave frequencies. J. Mater. Sci. 29(16), 4331–4338 (1994)

    Article  Google Scholar 

  13. A. Wang, W. Wang, C. Long, W. Li, J. Guan, H. Gu, G. Xu, Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J. Mater. Chem. C 2(19), 3769–3776 (2014)

    Article  Google Scholar 

  14. Y.B. Feng, T. Qiu, C.Y. Shen, X.Y. Li, Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans. Magn. 42(3), 363–368 (2006)

    Article  Google Scholar 

  15. L. Liu, Y. Duan, L. Ma, S. Liu, Z. Yu, Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl. Surf. Sci. 257(3), 842–846 (2010)

    Article  Google Scholar 

  16. Y. Xu, J. Luo, W. Yao, J. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J. Alloys Compd. 636, 310–316 (2015)

    Article  Google Scholar 

  17. M. Wang, Y. Duan, S. Liu, X. Li, Z. Ji, Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers. J. Magn. Magn. Mater. 321(20), 3442–3446 (2009)

    Article  Google Scholar 

  18. H. Li, L.M. Peng, M. Gong, J.H. Zhao, L.H. He, C.Y. Guo, Preparation and characterization of Ti3SiC2 powder. Ceram. Int. 30(8), 2289–2294 (2004)

    Article  Google Scholar 

  19. C. Racault, F. Langlais, R. Naslain, Solid-state synthesis and characterization of the ternary phase Ti3SiC2. J. Mater. Sci. 29(13), 3384–3392 (1994)

    Article  Google Scholar 

  20. S. Yang, Z.M. Sun, H. Hashimoto, T. Abe, Synthesis of single-phase Ti3SiC2 powder. J. Eur. Ceram. Soc. 23(16), 3147–3152 (2003)

    Article  Google Scholar 

  21. Y. Liu, F. Luo, W. Zhou, D. Zhu, Dielectric and microwave absorption properties of Ti3SiC2 powders. J. Alloys Compd. 576, 43–47 (2013)

    Article  Google Scholar 

  22. Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, Z. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloys Compd. 619, 854–860 (2015)

    Article  Google Scholar 

  23. Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Electromagnetic and microwave absorption properties of SiO2-coated Ti3SiC2 powders with higher oxidation resistance. J. Alloys Compd. 715, 21–28 (2017)

    Article  Google Scholar 

  24. M.W. Barsoum, T. ElRaghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79(7), 1953–1956 (1996)

    Article  Google Scholar 

  25. B.Y. Liang, S.Z. Jin, M.Z. Wang, Low-temperature fabrication of high purity Ti3SiC2. J. Alloys Compd. 460(1–2), 440–443 (2008)

    Article  Google Scholar 

  26. Y. Zhang, Y.C. Zhou, Y.Y. Li, Solid-liquid synthesis of Ti3SiC2 particulate by fluctuation procedure. Scripta Mater. 49(3), 249–253 (2003)

    Article  Google Scholar 

  27. X. Wu, H. Luo, Y. Wan, Preparation of SnO2-coated carbonyl iron flaky composites with enhanced microwave absorption properties. Mater. Lett. 92(2), 139–142 (2013)

    Article  Google Scholar 

  28. W. Zhang, D. Zhang, J. Cai, Microwave characteristics of low density flaky magnetic particles. J. Magn. Magn. Mater. 332(4), 15–20 (2013)

    Google Scholar 

  29. H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties ofuniform magnetite and maghemite particles. J. Colloid Interface Sci. 265(2), 283–295 (2003)

    Article  Google Scholar 

  30. Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, Electromagnetic and microwave absorption properties of the Nickel/ Ti3SiC2 hybrid powders in X-band. J. Magn. Magn. Mater. 365, 126–131 (2014)

    Article  Google Scholar 

  31. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010)

    Article  Google Scholar 

  32. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, P. Xu, Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloys Compd. 506(1), 93–97 (2010)

    Article  Google Scholar 

  33. Y. Qing, W. Zhou, S. Jia, F. Luo, D. Zhu, Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings. Appl. Phys. A 100(4), 1177–1181 (2010)

    Article  Google Scholar 

  34. Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, X. He, Y. Shi, Electromagnetic and microwave absorption properties of flaky FeCrAl particles. J. Mater. Sci. Mater. Electron. 28, 1–9 (2017)

    Google Scholar 

  35. X. Ren, H. Fan, Y. Cheng, Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites. Appl. Phys. A 122(5), 506 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the PHD Start-up Fund of XPU (BS1615), the Young Talent fund of University Association for Science and Technology in Shaanxi, China (No. 20170521), the Innovative Entrepreneurship Training Program for College Students (No. 201710709035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Su, X., Luo, F. et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating. J Mater Sci: Mater Electron 29, 2500–2508 (2018). https://doi.org/10.1007/s10854-017-8172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8172-z

Navigation