Skip to main content
Log in

Structural and photoluminescent elucidation of the efficient green emitting erbium doped BaY2ZnO5 nanophosphor for light emitting materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Erbium doped BaY2ZnO5 nanophosphor was synthesized by solution combustion approach using urea as an organic fuel. The spherical shaped phosphors in the nano dimension (40–70 nm) were characterized by X-ray diffraction, transmission electron microscopy and photoluminescence spectroscopy. XRD studies reveal that in BaY1.92Er0.08ZnO5 nano phosphor substitution of Y3+ ion by Er3+ ion does not lead to any major structural changes in the host lattice and confirms single phased nanophosphor crystallized in orthorhombic lattice with Pbnm (62) space group. The excitation spectrum depicts that this nanophosphor can be effectively excited by NUV light, resulting characteristic emissions from 2H9/2, 2H11/2, 4S3/2 to 4I15/2 transition level with predominant green emission at 549 nm. Concentration dependent luminescence tendency reveals optimized concentration for maximum luminescence as 4 mol%. A larger value of critical distance (14.38 Å) is found responsible for non-radiative energy transfer occurring via dipole–quadrupole (d–q) interactions leading to concentration quenching. Luminescence decay kinetics and color coordinates (0.283, 0.616) has also been evaluated. The findings of the study support the application of this nanophosphor in the field of NUV excited tricolor based PC-white LED systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Li, H. Hahn, R.W. Siegel, Mater. Lett. 6, 342 (1988)

    Article  Google Scholar 

  2. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989)

    Article  Google Scholar 

  3. C.R. Ronda, T. Jüstel, H. Nikol, J. Alloys Compd. 669, 275 (1998)

    Google Scholar 

  4. S. Shinoya, Phosphor Handbook (CRC Press, Boca Raton, 1998)

    Google Scholar 

  5. K. Omri, L. El Mir, Superlattices Microstruct. 70, 24 (2014)

    Article  Google Scholar 

  6. K. Omri, O.M. Lemine, L. El Mir, Ceram. Int. 43, 6585 (2017)

    Article  Google Scholar 

  7. K. Omri, L. El Mir, J. Mater. Sci. 27, 9476 (2016)

    Google Scholar 

  8. T. Nishida, T. Ban, N. Kobayshi, App. Phys. Lett. 82, 3817 (2003)

    Article  Google Scholar 

  9. F. Baur, F. Glockerb, T. Justel, J. Mater. Chem. C 3, 2054 (2015)

    Article  Google Scholar 

  10. R.A. Rodriguez, E.D. Rosa, P. Salas, R. Melendrez, M. Barboza-Flores, J. Phys. D 38, 3854 (2005)

    Article  Google Scholar 

  11. G.S.R. Raju, S. Buddhudu, Mater. Lett. 62, 1259 (2008)

    Article  Google Scholar 

  12. Y. Pan, M. Wu, Q. Su, J. Phys. Chem. Solids 65, 845 (2004)

    Article  Google Scholar 

  13. S.K. Singh, K. Kumar, S.B. Rai, Appl. Phys. B 94, 165 (2009)

    Article  Google Scholar 

  14. A.J. Steckl, J. Heikenfeld, D.S. Lee, M. Garter, Mater. Sci. Eng. B 81, 97 (2001)

    Article  Google Scholar 

  15. U. Rambabu, K. Annapurna, T. Balaji, S. Buddhudu, Mater. Lett. 23, 143 (1995)

    Article  Google Scholar 

  16. H. Guo, Opt. Mater. 29, 1840 (2007)

    Article  Google Scholar 

  17. G. Ajithkumar, B. Yoo, D.E. Goral, P.J. Hornsby, A.L. Lin, U. Ladiwala, V.P. Dravid, D.K. Sardar, J. Mater. Chem. B 1, 1561 (2013)

    Article  Google Scholar 

  18. S. Singh, S.P. Khatkar, V.B. Taxak, J. Mater. Sci. 24, 4677 (2013)

    Google Scholar 

  19. S.P. Khatkar, V.B. Taxak, S.D. Han, J.Y. Park, D. Kumar, Mater. Chem. Phys. 98, 528 (2006)

    Article  Google Scholar 

  20. S.P. Khatkar, S.D. Han, V.B. Taxak, G. Sharma, D. Kumar, Opt. Mater. 29, 1362 (2007)

    Article  Google Scholar 

  21. S.P. Sonika, M. Khatkar, V.B. Kumar, Taxak, J. Mater. Sci. 49, 572 (2014)

    Article  Google Scholar 

  22. C. Guo, X. Ding, Y. Xu, J. Am. Ceram. Soc. 93, 1708 (2010)

    Article  Google Scholar 

  23. H.Y. Chen, R.Y. Yang, S.J. Chang, Mater. Lett. 64, 2548 (2010)

    Article  Google Scholar 

  24. H.Y. Chen, M.H. Weng, R.Y. Yang, S.J. Chang, Ceram. Int. 37, 1521 (2011)

    Article  Google Scholar 

  25. H.Y. Chen, R.Y. Yang, S.J. Chang, J. Phys. Chem. Solids 74, 344 (2013)

    Article  Google Scholar 

  26. S. Kunimin, S. Fujihara, J. Electrochem. Soc 157, J175 (2010)

    Article  Google Scholar 

  27. C.H. Liang, L.G. Teoh, K.T. Liu, Y.S. Chang, J. Alloys Compd. 517, 9 (2012)

    Article  Google Scholar 

  28. S.P. Sonika, A. Khatkar, R. Khatkar, V.B. Kumar, Taxak, J. Electron. Mater. 44, 542 (2015)

    Article  Google Scholar 

  29. G.K. Cruz, H.C. Basso, M.C. Terrile, R.A. Carvalho, J. Lumin. 86, 155 (2000)

    Article  Google Scholar 

  30. I. Etchart, I. Herna´ndez, A. Huignard, M. Be´rard, M. Laroche, W.P. Gillin, R.J. Curry, A.K. Cheetham, J. Appl. Phys. 109, 063104 (2011)

    Article  Google Scholar 

  31. M.J.J. Lammers, H. Donker, G. Blasse, Mater. Chem. Phys. 13, 527 (1985)

    Article  Google Scholar 

  32. A. Birkel, A.A. Mikhailovsky, A.K. Cheetham, Chem. Phys. Lett. 477, 325 (2009)

    Article  Google Scholar 

  33. S. Ekambaram, K.C. Patil, J. Alloys Compd. 248, 7 (1997)

    Article  Google Scholar 

  34. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  35. A.C. Larson, R.B.V. Dreele, General Structure Analysis System (LANSCE, Los Alamos, 1994)

    Google Scholar 

  36. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    Article  Google Scholar 

  37. F. Davar, A. Hassankhani, M.R.L. Estarki, Ceram. Int. 39, 2933 (2013)

    Article  Google Scholar 

  38. V.R. Bandi, B.K. Grandhe, K. Jang, H.S. Lee, D.S. Shin, S.S. Yi, J.H. Jeong, J. Alloys Compd. 512, 264 (2012)

    Article  Google Scholar 

  39. E. Pavitra, G.S. Raju, Y.H. Ko, J.S. Yu, Phys. Chem. Chem. Phys. 14, 11296 (2012)

    Article  Google Scholar 

  40. D. Jia, Electrochem. Solid State Lett. 9, 93 (2006)

    Article  Google Scholar 

  41. Y. Deng, S. Yi, Y. Wang, J. Xian, Opt. Mater. 36, 1378 (2014)

    Article  Google Scholar 

  42. S.A. Yan, J.W. Wang, Y.S. Chang, W.S. Hwang, Y.H. Chang, Opt. Mater. 34, 147 (2011)

    Article  Google Scholar 

  43. M. Dalal, V.B. Taxak, D. Sheetal, S.P. Kumar, Khatkar, Mater. Chem. Phys. 149–150, 713 (2015)

    Article  Google Scholar 

  44. J. Wu, S. Shi, X. Wang, J. Li, R. Zong, W. Chenc, J. Mater. Chem. C 2, 2786 (2014)

    Article  Google Scholar 

  45. G. Blasse, Philips Res. Rep. 24, 131 (1969)

    Google Scholar 

  46. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  Google Scholar 

  47. C.H. Chang, B.S. Chiou, K.S. Chen, C.C. Ho, J.C. Ho, Ceram. Int. 31, 635 (2005)

    Article  Google Scholar 

  48. J. Hao, S.A. Studenikin, M. Cocivera, J. Lumin. 93, 313 (2001)

    Article  Google Scholar 

  49. Y. Nakanishi, K. Kimura, H. Kominami, H. Nakajima, Y. Hatanaka, G. Shimaoka, Appl. Surf. Sci. 815, 212 (2003)

    Google Scholar 

  50. H.X. Zhang, S. Buddhudu, C.H. Kam, Y. Zhou, Y.L. Lam, K.S. Wong, B.S. Ooi, S.L. Ng, W.X. Que, Mater. Chem. Phys. 68, 31 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Ms. Sangeeta Chahar gratefully acknowledges the financial support in the form of senior research fellowship (SRF) from University Grant Commission (UGC), New Delhi, India (Award No. 2121210103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Khatkar.

Ethics declarations

Conflict of interest

The authors indicated no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahar, S., Dalal, M., Singh, S. et al. Structural and photoluminescent elucidation of the efficient green emitting erbium doped BaY2ZnO5 nanophosphor for light emitting materials. J Mater Sci: Mater Electron 29, 2175–2183 (2018). https://doi.org/10.1007/s10854-017-8130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8130-9

Navigation