Skip to main content

Advertisement

Log in

Synthesis and thermoelectric characterizations of Pd and Se-doped skutterudite compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the last several decades many researches are focused towards renewable energy sources. Among the variety of renewable energy sources the thermoelectric energy, which is generated by thermoelectric materials. Thermoelectric is one of the most promising sources of renewable energies. It’s based on the conversion of waste energy to a useful one. This work will focus on the enhancement of advanced thermoelectric materials CoSb3 with a 0.2 fraction of Se and several different fractions of Pd (x = 0.2, 0.3, 0.4, 0.5) which prepared by hot pressing and characterized by X-ray. The samples were characterized by the measurement of the electrical and thermal conductivities as well as the Seebeck coefficient between room temperature and 900 K. The sample had n-type conductivity. The dimensionless thermoelectric figure of merit ZT increases with increasing temperature and reaches a maximum value of 1.096 at 873 K for Co3.5Sb11.8Pd0.5Se0.2 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Uher, in Semiconductors and Semimetals, vol. 69 (Academic Press, San Diego, 2000), pp. 139–253

    Google Scholar 

  2. G.S. Nolas, D.T. Morelli, T.M. Tritt, Ann. Rev. Mater. Sci. 29, 89–116 (1999)

    Article  Google Scholar 

  3. L.D. Chen, T. Kawahara, X.F. Tang, T.C. Goto, T. Hirai, J. Appl. Phys. 90, 1864–1868 (2001)

    Article  Google Scholar 

  4. M. Puyet, B. lenoir, A. Dauscher, M. Dehmas, C. Stiewe, E. Müller, J. Appl. Phys. 95, 4852–4855 (2004)

    Article  Google Scholar 

  5. D.T. Morelli, G.P. Meiner, B. Chen, S. Hu, C. Uher, Phys. Rev. B 56, 7376–7383 (1997)

    Article  Google Scholar 

  6. V.L. Kuznetsov, L.A. Kuznetsov, D.M. Roe et al., J. Appl. A. J. Phys. Condens. Mater. 15, 5035–5048 (2003)

    Article  Google Scholar 

  7. J.S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, J. Appl. Phys. 91, 3698–3705 (2002)

  8. M. Chitroub, F. Besse, H. Scherrer, J. Alloy Compd. 467, 31–34 (2009)

    Article  Google Scholar 

  9. M. Chitroub, C. Bouhafs, A. Daimellah, H. Scherrer, J. Mater. Sci. 25, 3933–3938 (2014)

    Google Scholar 

  10. J.Mc. Cormack, J.P. Fleurial, Modern Perpesctives on Thermoelectric and Related Materials, vol. 234 (Materials Research Society, Pittsburgh, 1991), pp. 135–143

    Google Scholar 

  11. C. Wood, D. Zoltan, G. Stapfer, Rev. Sci. Instrum. 56, 719–722 (1985)

    Article  Google Scholar 

  12. J.W. Vandersande, C. Wood, A. Zoltan, D. Whittenberger, in Thermal Conductivity, vol. 19, (Plenium Press, New York, 1988), pp. 445–452

    Google Scholar 

  13. V. Da Ros, B. Lenoir, A. Dauscher, C. Bellouard, J. Hejmanek, Proceedings of the Third Eurpean Conference on Thermoelectrics, Ecole Nationale Supérieure des Mines de Nancy, France, September 1–2, 2005, pp. 108–111

  14. K.T. Wojciechowski, Mater. Res. Bull. 37, 2023–2033 (2002)

    Article  Google Scholar 

  15. K.T. Wojciechowski, J. Tobola, J. Leszczüski, J. Alloy Compd. 361, 19–27 (2003)

    Article  Google Scholar 

  16. B. Abeles, Phys. Rev. 131, 1906 (1963)

    Article  Google Scholar 

  17. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, C. Uher, Phys. Rev. Lett. 80 3551 (1998)

    Article  Google Scholar 

  18. G.S. Nolas, M. Kaeser, R.T. Littleton IV, T.M. Tritt, App. Phys. Lett. 77, 1855–1857 (2000)

    Article  Google Scholar 

  19. S. Hui, M.D. Nielsen, M.R. Homer, L.D. Medlin, J. Tobola, J.R. Salvador, J.P. Heremans, K.P. Pipe, C. Uher, J. Appl. Phys. 115–123 (2014)

Download references

Acknowledgements

The authors are grateful and acknowledge Hamid Medjahed for his help in the measurement of thermoelectric properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bouhafs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhafs, C., Chitroub, M. & Scherrer, H. Synthesis and thermoelectric characterizations of Pd and Se-doped skutterudite compound. J Mater Sci: Mater Electron 29, 1264–1268 (2018). https://doi.org/10.1007/s10854-017-8031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8031-y

Navigation