Skip to main content
Log in

Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin oxide (SnO2) nanoparticles were synthesized employing simple sol–gel method. Modification in the structural, morphological and optical properties of the as-synthesized tin oxide nanoparticles due to various solution pH (6–12) and thermal annealing at 400 °C (Experiment 1) was studied. X-ray diffraction results of the tin oxide nanoparticles prepared from the precursor solution pH 8 and annealed at 400 °C showed the formation of tin oxide tetragonal phase (SnO2-t) and the surface morphology of the SnO2-t nanoparticles studied by scanning electron microscope revealed the formation of spherical shaped agglomerations. Hence, the tin oxide nanoparticles prepared from the solution pH 8 were annealed at 200, 400, 600 and 800 °C in order to study the effect of annealing at various temperatures on the structural, morphological, optical and vibrational properties of tin oxide nanoparticles (Experiment 2). When the annealing temperature was increased to 600 and 800 °C, mixed phases of SnO2-t and tin oxide orthorhombic system (SnO-o) were formed. Various solution pH and annealing temperatures influenced the direct band gap value. SnO2-t phase synthesized from the solution pH 8 and annealed at 400 °C showed a direct band gap of ~4.50 eV. The tin oxide samples annealed at various temperatures showed a slight shift in the fluorescence peak observed at ~327 nm. Raman studies of the samples obtained from Experiment 1 and Experiment 2 showed a slight shift in the vibrational frequency. I–V studies carried out to investigate the electrical properties of the SnO2 thin film formed by simple drop casting method revealed better ohmic contact and its suitability for gas sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Chetri, A. Choudhury, E. Physica, Low-Dimens. Syst. Nanostruct. 47, 257–263 (2013)

    Article  Google Scholar 

  2. D.L. Feldheim, C.A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications (Taylor & Francis, New York, 2001), pp. 7874–7875

    Google Scholar 

  3. L. Aswaghosh, D. Manoharan, N.V. Jaya, Phys. Chem. Chem. Phys. 8, 1–11 (2016)

    Google Scholar 

  4. R. Adan, N.A. Razana, I.A. Rahman, M.A. Farrukh, J. Chin. Chem. Soc. 57, 222–229 (2010)

    Article  Google Scholar 

  5. M. Batzhill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005)

    Article  Google Scholar 

  6. L. Cojocaru, C. Olivier, T. Toupance, E. Sellierb, L. Hirsch, J. Mater. Chem. A 44, 13789–13799 (2013)

    Article  Google Scholar 

  7. M.M. Rashad, I.A. Ibrahim, I. Osama, A.E. Shalan, Bull. Mater. Sci. 37, 903–909 (2014)

    Article  Google Scholar 

  8. A.K. Singh, U.T. Nakate, Adv. Nanopart. 2, 66–70 (2013)

    Article  Google Scholar 

  9. S.H. Ng, D.I.D. Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Electrochem. Commun. 9, 915–919 (2007)

    Article  Google Scholar 

  10. Q. Tian, Y. Tian, Z. Zhang, L. Yang, S.I. Hirano, Power Sour. 269, 479–485 (2014)

    Article  Google Scholar 

  11. H. Xiguang, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Angew. Chem. Int. Ed. 48, 9180–9183 (2009)

    Article  Google Scholar 

  12. L. Li, S. Chen, L. Xu, Y. Bai, Z. Nie, H. Liu, L. Qi, Mater. Chem. B 2, 1121–1124 (2014)

    Article  Google Scholar 

  13. A.S. Reddy, N.M. Figueiredo, A. Cavaleiro, J. Phys. Chem. Solids 74, 825–829 (2003)

    Article  Google Scholar 

  14. C.M. Liu, X.T. Zu, Q.M. Wei, L.M. Wang, J. Phys. D 39, 2494–2497 (2006)

    Article  Google Scholar 

  15. Y. Cheng, R. Yang, J.P. Zheng, Z.L. Wang, P. Xiong, Mater. Chem. Phys. 137, 372–380 (2012)

    Article  Google Scholar 

  16. Z.R. Dai, Z.W. Pan, Z.L. Wang, Solid State Commun. 118, 351–354 (2001)

    Article  Google Scholar 

  17. S.M. Priya, A. Geetha, K. Ramamurthi, J Sol-Gel Sci. Technol. 78, 365–372 (2016)

    Article  Google Scholar 

  18. D. Chen, L. Gao, Chem. Phys. Lett. 398, 201–206 (2004)

    Article  Google Scholar 

  19. H. Yang, Y. Hu, A. Tang, S. Jin, G. Qiu, J. Alloys Compd. 363, 271–274 (2004)

    Article  Google Scholar 

  20. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Int. Nano Lett. 2, 17 (2012)

    Article  Google Scholar 

  21. N. Rajesh, J.C. Kannan, T. Krishnakumar, S.G. Leonardi, G. Neri, Sens. Actuator B-Chem. 194, 96–104 (2014)

    Article  Google Scholar 

  22. E.T.H. Tan, G.W. Ho, A.S.W. Wong, S. Kawi, A.T.S. Wee, Nanotechnology 19, 255706 + 07 (2008)

    Google Scholar 

  23. S. Gnanam, V. Rajendran, J. Sol–Gel Sci. Technol. 53, 555–559 (2010)

    Article  Google Scholar 

  24. H. Giefers, F. Porsch, G. Wortmann, Solid State Ionics 176, 199–207 (2005)

    Article  Google Scholar 

  25. M. Meyer, G. Onida, A. Ponchel, L. Reining, Comp. Mater. Sci. 10, 319–324 (1998)

    Article  Google Scholar 

  26. K. Nose, A.Y. Suzuki, N. Oda, M. Kamiko, Y. Mitsuda, Appl. Phys. Lett. 104(1–4), 091905 (2014)

    Article  Google Scholar 

  27. C.D. Gu, H. Zheng, X.L. Wang, J.P. Tu, RSC Adv. 5, 9143–9153 (2015)

    Article  Google Scholar 

  28. D. Hu, B. Han, S. Deng, Z. Feng, Y. Wang, J. Popovic, M. Nuskol, Y. Wang, I. Djerdj, J. Phys. Chem. C 118, 9832–9840 (2014)

    Article  Google Scholar 

  29. A. Diallo, E. Manikandan, V. Rajendran, M. Maaza, J. Alloys Compd. 681, 561–570 (2016)

    Article  Google Scholar 

  30. K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, J.S. Aanand, M. Jayachandran, M. Maaza, IEEE 16, 2477–2483 (2016)

    Google Scholar 

  31. P.K. Sharma, V.V. Varadan, V.K. Varadan, J. Eur. Ceram. Soc. 23, 659–666 (2003)

    Article  Google Scholar 

  32. B. Houng, C.L. Huang, S.Y. Tsai, J. Cryst. Growth 307, 328–333 (2007)

    Article  Google Scholar 

  33. N. Shanmugam, S. Cholan, N. Kannadasan, N. Sathishkumar, N. Viruthagiri, J. Nanomater. 2013, 1–7 (2013)

  34. L.L. Hench, J.K. West, Chem. Rev. 90, 33–72 (1990)

    Article  Google Scholar 

  35. M. Marikannan, V. Vishnukanthan, A. Vijayashankar, J. Mayandi, J.M. Pearce, AIP Adv. 5(1-), 027122 (2015). -027122–8

    Article  Google Scholar 

  36. Z. Wang, S. Liu, T. Jiang, X. Xu, .J Zhang, C. An, C. Wang, RSC Adv. 5, 64582–64587 (2015)

    Article  Google Scholar 

  37. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New York, 2001), pp. 78–103

    Google Scholar 

  38. B. Sathyaseelan, E. Manikandan, V. Lakshmanan, I. Bashkar, K. Sivakumar, R. Ladchumananandasivam, J. Kennedy, M. Maaza, J. Alloys Compd. 671, 486–492 (2016)

    Article  Google Scholar 

  39. A. Muthukumar, D. Arivuoli, E. Manikandan, M. Jayachandran, Opt. Mater. 47, 88–94 (2015)

    Article  Google Scholar 

  40. R. Wahab, Y.S. Kim, H.S. Shin, Mater. Trans. 50, 2092–2097 (2009)

    Article  Google Scholar 

  41. R. Krahne, L. Manna, G. Morello, A. Figureolo, C. George, S. Deka, Physical Properties of Nanorods (Nanoscience and Technology, New York, 2013)

    Book  Google Scholar 

  42. V. Agrahari, A.K. Tripathi, M.C. Mathpal, A.C. Pandey, S.K. Mishra, R.K. Shukla, A. Agarwal, J. Mater. Sci. 26, 9571–9582 (2015)

    Google Scholar 

  43. M. Saravanakumar, S. Agilan, N. Muthukumaraswamy, A. Marusamy, K. Prabakaran, A. Ranjitha, U.P. Maheshwari, Indian J. Phys. 88, 831–835 (2014)

    Article  Google Scholar 

  44. M. Pherson, A. Richard, R.P. Matthew, Henry’s clinicAl Diagnosis and Management by Laboratory Methods E Book, 23rd edn. (Elsevier Health Sciences, Missouri, 2017), pp. 1–1568

    Google Scholar 

  45. J. Tauc, Liquid Amorphous, Semiconductors, (Springer Science & Business Media, New York, 2012), pp. 159–220

    Google Scholar 

  46. T. Shukla, J. Sens. Technol. 2, 102–108 (2012)

    Article  Google Scholar 

  47. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, Mater. Sci. Eng.-B 157, 101–104 (2009)

    Article  Google Scholar 

  48. X. Mathew, J.P. Enriquez, C.M. García, G.C. Puente, M.A.C. Jacome, J.A.T. Antonio, J. Hays, A. Punnoose, J. Appl. Phys. 100, 0739071–0739077 (2006)

    Google Scholar 

  49. S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, J. Zuo, Chem. Phys. Lett. 376, 103–107 (2003)

    Article  Google Scholar 

  50. M.N. Rumyantseva, A.M. Gaskov, N. Rosman, T. Pagnier, J.R. Morante, Chem. Mater. 17, 893–901 (2005)

    Article  Google Scholar 

  51. J. Geurts, S. Rau, W. Richter, F.J. Schmitte, Thin Solid Films 121, 217–225 (1984)

    Article  Google Scholar 

  52. M. Poloju, N. Jayababu, E. Manikandan, M.V.R. Reddy, J. Mater. Chem. C 5, 2662–2668 (2017)

    Article  Google Scholar 

  53. S.S. Pan, C. Ye, X.M. Teng, L. Li, G.H. Li, Appl. Phys. Lett. 89(1–3), 251911 (2006)

    Article  Google Scholar 

  54. K. Anandan, V. Rajendiran, J. Phys. Sci. 19, 129–141 (2014)

    Google Scholar 

  55. A. Azam, A.S. Ahmed, S.S. Habib, A.H. Naqvi, J. Alloys Compd. 523, 83–87 (2012)

    Article  Google Scholar 

  56. R.K. Mishra, A. Kushwaha, P.P. Sahay, RSC Adv. 4, 3904–3912 (2014)

    Article  Google Scholar 

  57. A. Johari, M.C. Bhatnagar, V. Rana, Adv. Mat. Lett. 3, 515–518 (2012)

    Article  Google Scholar 

  58. J.HuangY. Liu, Y. Wu, X. Li, Am. J. Analyt. Chem. 8, 60–71 (2017)

    Article  Google Scholar 

  59. O. Teresa, Trans. Electr. Electron. Mater. 18, 21–24 (2017)

    Article  Google Scholar 

  60. D.R. Viji, N. Singh, Luminescence and Related Properties of II-VI Semiconductors (Nova Publishers, New York, 1998), pp. 99–101

    Google Scholar 

Download references

Acknowledgements

One of the authors (MP) sincerely thanks SRM University, Chennai, for the award of SRM research fellowship to carry out the work. The authors gratefully acknowledge Prof. D. John Thiruvadigal, Dean of Science and humanities, Dr. Preferencial Kala, Head, department of Physics and Nanotechnology and SRM University for extending the facilities created under (DST-FIST SR/FST/PSI-155/2010). The authors also thank Centre for Nanoscience and Nanotechnology and to Nanotechnology Research Centre, SRM University, for extending the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetha Arunachalam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, M.P., Arunachalam, G., Kandasamy, R. et al. Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method. J Mater Sci: Mater Electron 29, 658–666 (2018). https://doi.org/10.1007/s10854-017-7959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7959-2

Navigation