Skip to main content
Log in

Structural phase transformation and modification of optical absorption of SHI induced nanostructured CdS films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured CdS films are prepared on glass substrates by chemical bath deposition (CBD) method at room temperature and the samples are subjected to 120 MeV Ag9+ SHI irradiation at various fluences from 1 × 1011 to 3 × 1013 ions/cm2. Analysis of the samples by XRD exhibits both pristine as well as irradiated films are of cubic phase structure and shifting of diffraction peaks towards lower diffraction angle is observed upon irradiation. Structural phase transition from cubic to hexagonal is observed for the sample at high fluence 3 × 1013 ions/cm2. Crystallite size is found to increase for irradiated samples. Surface morphology observed using AFM shows that films consist of several nanoparticles (grains) and several small grains of CdS nanoparticles are grouped to form cluster. Increase in grain size due to irradiation is also observed from AFM picture. The optical absorption spectra exhibit shift in the fundamental absorption edge and hence the optical band gap energy decreases but the refractive index as well as dielectric constant increase with increasing ion fluence. Two intense and one weak Raman lines for pristine as well as irradiated CdS have been observed and all the samples show shift in Raman lines relative to bulk CdS due to phonon localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Kayanuma, Phys. Rev. B Condens Matter 38, 9797 (1988)

    Article  Google Scholar 

  2. S. Sarmah, A. Kumar, Indian J. Phys. 85, 713 (2011)

    Article  Google Scholar 

  3. P. Mallick, C. Rath, R. Biswal, N.C. Mishra, Indian J. Phys. 83, 517 (2009)

    Article  Google Scholar 

  4. J.K. Dongre, V. Nogriya, M. Ramrakhiani, Appl. Surface Sci. 255, 6115 (2009)

    Article  Google Scholar 

  5. P.P. Hankare, V.M. Bhuse, K.M. Gardhar, S.D. Delekar, I.S. Mulla, Semicond. Sci. Technol. 19, 70 (2004)

    Article  Google Scholar 

  6. T.K. Todorov, O. Gunawan, T. Gokmen, D.B. Mitzi, Prog. Photovolt. 21, 82 (2013)

    Article  Google Scholar 

  7. P. Kumar, D. Kukkar, A. Deep, S.C. Sharma, L.M. Bharadwaj, Adv. Mater. Lett. 3, 471 (2012)

    Article  Google Scholar 

  8. N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Electrochim. Acta 91, 246 (2013)

    Article  Google Scholar 

  9. P.K. Mochahari, K.C. Sarma, Indian J. Phys. 88, 1265 (2014)

    Article  Google Scholar 

  10. J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, J.M. Bermúdez, Fuel Process. Technol. 91, 1 (2010)

    Article  Google Scholar 

  11. A.G. Chmielewski, D.K. Chmielewska, J. Michalik, M.H. Sampa, Phys. Res. Sect. B 265, 339 (2007)

    Google Scholar 

  12. X. Bingshe, N. Mei, W. Liqiao, H. Wensheng, L. Xuguang, J. Photochem. Photobiol. A 188, 98 (2007)

    Article  Google Scholar 

  13. A. Antony, S. Pramodini, P. Poornesh, I.V. Kityk, A.O. Fedorchuk, G. Sanjeev, Opt. Mater. 62, 64 (2016)

    Article  Google Scholar 

  14. Y. Kumar, M. Herrera, F. Singh, S.F.O Méndez, D. Kanjilal, S. Kumar, V. Agarwal, Mater. Sci. Eng. B 177, 1476 (2012)

    Article  Google Scholar 

  15. A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 071301 (2010)

    Article  Google Scholar 

  16. R.G. Singh, F. Singh, I. Sulania, D. Kanjilal, K. Sehrawat, V. Agarwal, R.M. Mehra, Nucl. Instrum. Methods Phys. Res. B 267, 2399 (2009)

    Article  Google Scholar 

  17. A. Kamarou, W. Wesch, E. Wendler, Phys. Rev. B 78, 054111 (2008)

    Article  Google Scholar 

  18. V.V. Ison, A.R. Rao, V. Dutta, P.K. Kulriya, D.K. Avasthi, S.K. Tripathi, J. Appl. Phys. 106, 023508 (2009)

    Article  Google Scholar 

  19. N. Choudhury, F. Singh, B.K. Sarma, Indian J. Pure Appl. Phys. 50, 325 (2012)

    Google Scholar 

  20. D. Sulania, S.K. Agarwal, M. Tripathi, Husain, Radiat. Eff. Def. Solids 167, 59 (2012)

    Article  Google Scholar 

  21. P. Kumar, N. Saxena, R. Chandra, K. Gao, S. Zhou, A. Agarwal, F. Singh, V. Gupta, D. Kanjilal, J. Lumin. 147, 184 (2014)

    Article  Google Scholar 

  22. F. Singh, R.G. Singh, V. Kumar, S.A. Khan, J.C. Pivin, J. Appl. Phys. 110, 083520 (2011)

    Article  Google Scholar 

  23. S. Chandramohan, R. Sathyamoorthy, P. Sudhagar et al., Appl. Phys. A 94, 703 (2009)

    Article  Google Scholar 

  24. Y.S. Chaudhary, S.A. Khan, R. Shrivastav et al., Nucl. Instrum. Methods Phys. Res. B 225, 291 (2004)

    Article  Google Scholar 

  25. D.C. Agarwal, A. Kumar, S.A. Khan et al., Nucl. Instrum. Methods Phys. Res. B 244, 136 (2006)

    Article  Google Scholar 

  26. P. Kumar, N. Saxena, R. Chandra et al., Nanoscale Res. Lett. 7(1–7), 584 (2012)

    Article  Google Scholar 

  27. A. Benyagoub, Phys. Rev. B 72(1–7), 094114 (2005)

    Article  Google Scholar 

  28. P. Kumar, N. Saxena, R. Chandra et al., J. Lumin. 147, 184 (2014)

    Article  Google Scholar 

  29. C. Kittel, Introduction to solid state physics, 7th edn. (Wiley, Hoboken, 1995), pp. 29–30

    Google Scholar 

  30. N. Choudhury, B.K. Sarma, Thin Solid Films 519, 2132 (2011)

    Article  Google Scholar 

  31. P.K. Mochahari, K.C. Sarma, Indian J. Phys. 90, 21 (2016)

    Article  Google Scholar 

  32. S. Sen, S.K. Halder, S.P. Sengupta, J. Phys. Soc. Jpn. 38, 1641 (1975)

    Article  Google Scholar 

  33. S. Ghosh, S.A. Khan, V. Ganesan et al., Nucl. Instrum. Methods B 244, 34 (2006)

    Article  Google Scholar 

  34. P.K. Mochahari, A. Rajbongshi, N. Choudhury, F. Singh, K.C. Sarma, Adv. Mater. Lett. 6, 354 (2015)

    Article  Google Scholar 

  35. K. Senthil, D. Mangalaraj, S.K. Narayandass et al., Semicond. Sci. Technol. 17, 97 (2002)

    Article  Google Scholar 

  36. J. Tauc ed. Amorphous and liquid semiconductors, (Plenum press, London, 1974), p. 171 (Chap. 4)

    Google Scholar 

  37. S.M. El-Sayed, Nucl. Instrum. Methods Phys. Res. B 225, 535 (2004)

    Article  Google Scholar 

  38. S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, Nucl. Instrum. Methods Phys. Res. B 254, 236 (2007)

    Article  Google Scholar 

  39. A. Hussain Reshak, I.V. Kityk, R. Khenata, S. Auluck, J. Alloys Compd. 509, 6737 (2011)

    Article  Google Scholar 

  40. T.S. Moss, Phys. Status Solidi (B) 131, 415 (1985)

    Article  Google Scholar 

  41. P. Herve, L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    Article  Google Scholar 

  42. G.A. Samara, Phys. Rev. B 27, 3494 (1983)

    Article  Google Scholar 

  43. R.R. Ahire, A.A. Sagade, N.G. Deshpande, S.D. Chavhan, R. Sharma, F. Singh, J. Phys. D 40, 4850 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to IUAC, New Delhi for providing facility to carry out irradiation experiment and for providing XRD, Raman, AFM facilities. Sincere thanks goes to department of Physics, Gauhati University, India for spectrophotometer observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Mochahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochahari, P.K., Singh, F. & Sarma, K.C. Structural phase transformation and modification of optical absorption of SHI induced nanostructured CdS films. J Mater Sci: Mater Electron 29, 582–588 (2018). https://doi.org/10.1007/s10854-017-7950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7950-y

Navigation