Skip to main content
Log in

Template based room temperature growth of high density CdS nanowires from aqueous electrolyte using high frequency alternating current

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High quality CdS nanowires (NWs) are grown at room temperature by electrochemical deposition into the pores of prepared porous alumina templates (PATs) from alkaline aqueous electrolyte solution (pH = 8.5) containing Cd2+ and S2O3 2−, using high frequency (200 Hz) alternating current (ac, 21 Vrms). PATs with hexagonally ordered nanoporous columns are prepared using relatively simple and faster single step anodizing at 30 Vdc in 0.24 M oxalic acid. The room temperature synthesis of NWs from aqueous solution using ac voltage simplifies the growth process as well as makes it an inexpensive approach for the fabrication of CdS NWs in large density. Atomic force microscopy and scanning electron microscopy (SEM) confirm the formation of spatially regular and well-arranged hexagonal porous structures. SEM further shows that diameter of grown CdS NWs lie in the range ~ 30–50 nm. Raman spectroscopy and X-ray diffraction of as deposited and annealed PAT–CdS nanowires composites confirm the formation of high crystalline quality CdS NWs having hexagonal wurtzite crystal structure. The preparation method and possible mechanism for the synthesis of CdS NWs is discussed. The deposition method can be generalized to a wide range of semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature 375, 769 (1995)

    Article  Google Scholar 

  2. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)

    Article  Google Scholar 

  3. X. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  4. Y. Kondo, K. Takayanagi, Science 289, 606 (2000)

    Article  Google Scholar 

  5. W. Fritzsche, K.J. Bohm, E. Unger, J.M. Kohler, Appl. Phys. Lett. 75, 2854 (1999)

    Article  Google Scholar 

  6. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Science 302, 1377 (2003)

    Article  Google Scholar 

  7. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  Google Scholar 

  8. X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007)

    Article  Google Scholar 

  9. K. Liu, K. Nagodawithana, P.C. Searson, C.L. Chien, Phys. Rev. B 51, 7381 (1995)

    Article  Google Scholar 

  10. S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  11. X.S. Peng, J. Zhang, X.F. Wang, Y.W. Wang, L.X. Zhao, G.W. Meng, L.D. Zhang, Chem. Phys. Lett. 343, 470 (2001)

    Article  Google Scholar 

  12. C.M. Shen, X.G. Zhang, H.L. Li, Mater. Sci. Eng. A 303, 19 (2001)

    Article  Google Scholar 

  13. W. Yang, Z. Wu, Z. Lu, X. Yang, L. Song, Microelectron. Eng. 83, 1971 (2006)

    Article  Google Scholar 

  14. S.P. Mondal, A. Dhar, S.K. Ray, Mater. Sci. Semicond. Process. 10, 185 (2007)

    Article  Google Scholar 

  15. S.P. Mondal, K. Das, A. Dhar, S.K. Ray, Nanotechnology 18, 095606 (2007)

    Article  Google Scholar 

  16. M.A. Jafarov, E.F. Nasirov, R. Mammadov, Int. J. Latest Res. Sci. Technol. 3, 6 (2014)

    Google Scholar 

  17. X. Yajie, X. Dongsheng, C. Dapeng, G. Guolin, L. Chongjia, Acta Physico Chimica Sinica 15, 577 (1999)

    Google Scholar 

  18. D. Xu, D. Chen, Y. Xu, X. Shi, G. Guo, L. Gui, Y. Tang, Pure. Appl. Chem. 72, 127 (2000)

    Google Scholar 

  19. D. Xu, X. Shi, G. Guo, L. Gui, Y. Tang, J. Phys. Chem. B 104, 5061 (2000)

    Article  Google Scholar 

  20. G. Riveros, J. Vásquez, H. Gómez, T. Makoarova, D. Silva, R.E. Marotti, E.A. Dalchiele, Appl. Phys. A 90, 423 (2008)

    Article  Google Scholar 

  21. H. Gómez, G. Riveros, D. Ramirez, R. Henríquez, R. Schrebler, R. Marotti, E. Dalchiele, J. Solid State Electrochem. 16, 197 (2012)

    Article  Google Scholar 

  22. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, J. Phys. Chem. 100, 14037 (1996)

    Article  Google Scholar 

  23. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  Google Scholar 

  24. R. Frerichs, J. Appl. Phys. 21, 312 (1959)

    Article  Google Scholar 

  25. J. Grohs, S. Apanasevich, P. Jung, H. Issler, D. Burak, C. Klingshirn, Phys. Rev. A 49, 2199 (1994)

    Article  Google Scholar 

  26. Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Appl. Phys. Lett. 92, 022105 (2008)

    Article  Google Scholar 

  27. Z.L. Wang, Adv. Mater. 19, 889 (2007)

    Article  Google Scholar 

  28. B. Piccione, R. Agarwal, Y. Jung, R. Agarwal, Philos. Mag. 93, 2089 (2013)

    Article  Google Scholar 

  29. V.P. Singh, R.S. Singh, G.W. Thompson, V. Jayaraman, S. Sanagapalli, V.K. Rangari, Solar Energy Mater. Solar Cells 81, 293 (2004)

    Article  Google Scholar 

  30. D. Shvydka, J. Drayton, A.D. Compaan, V.G. Karpov, Appl. Phys. Lett. 87, 23505 (2005)

    Article  Google Scholar 

  31. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Adv. Phys. 38, 89 (1989)

    Article  Google Scholar 

  32. M. Han, X. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631 (2001)

    Article  Google Scholar 

  33. R. Aggarwal, P.R. Sankar, S. Chuadhary, A.A. Ingale, in Proceedings of International Conference on Nanoscience and Technology, Chandigarh, India, P-28 (T-9) (2014)

  34. J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. Lond. A 317, 511 (1970)

    Article  Google Scholar 

  35. G.E. Thompson, G.C. Wood, Treatise on Materials Science and Technology, Corrosion: Aqueous Processes and Passive Films, vol. 23 (Academic Press, New York, 1983), p. 205

    Book  Google Scholar 

  36. S. Wernick, R. Pinner, P.G. Sheasby, The Surface Treatment and Finishing of Aluminum and Its Alloys, vol. 5 (ASM International, Metals Park, 1987)

    Google Scholar 

  37. H. Uchi, T. Kanno, R.S. Alwitt, J. Electrochem. Soc. 148, B17 (2001)

    Article  Google Scholar 

  38. F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)

    Article  Google Scholar 

  39. G.D. Sulka, W.J. Stępniowski, Electrochim. Acta 54, 3683 (2009)

    Article  Google Scholar 

  40. D. Nemes, V. Moldovan, E. Bruj, N. Jumate, I. Vida-simiti, Eng. Sci. 4, 75 (2011)

    Google Scholar 

  41. H. Rezazadeh, M. Ebrahimzadeh, M.R.Z. Yam, World Acad. Sci. Eng. Technol. 6, 892 (2012)

    Google Scholar 

  42. J. Liu, S. Liu, H. Zhou, C. Xie, Z. Huang, C. Fu, Y. Kuang, Thin Solid Films 552, 75 (2014)

    Article  Google Scholar 

  43. J. O’M Bockris, A.K.N. Reddy, Modern Electrochemistry, vol. 2 (Plenum Press, New York, 1970)

    Book  Google Scholar 

  44. K.R. Hebert, S.P. Albu, I. Paramasivam, P. Schmuki, Nat. Mater. 11, 162 (2012)

    Article  Google Scholar 

  45. G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)

    Article  Google Scholar 

  46. O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett 72, 1173 (1998)

    Article  Google Scholar 

  47. S. Shinohara, R. Hoshino, J. Fac. Sci., Hokkaido University Ser. 2, Physics 4(2), 140 (1952)

    Google Scholar 

  48. D. Routkevitch, T.L. Haslett, L. Ryan, T. Bigioni, C. Douketis, M. Moskovits, Chem. Phys. 210, 343 (1996)

    Article  Google Scholar 

  49. P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  50. P. Kubelka, J. Opt. Soc. Am. A 38, 448 (1948)

    Article  Google Scholar 

  51. J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. (b) 15, 627 (1966)

    Article  Google Scholar 

  52. S. Sakthivel, M.C. Hidalgo, D.W. Bahnemann, S.-U. Geissen, V. Murugesan, A. Vogelpohl, Appl. Catal. B: Environ. 63, 31 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish a vote of thanks to Mr. S. C. Joshi, Dr. P. K. Gupta, Dr. H. S. Rawat and Dr. G. S. Lodha for their support provided during the course of this work. Authors thank Ms. R. Selvamani for performing the gold coating on the samples for SEM measurements. Authors are thankful to Ms. Rashmi Singh and Mr. M. K. Singh for carrying out the SEM measurements. Authors are also thankful to Mr. R. Kamparath and Mr. N. K. Sharma for carrying out diffuse reflectance measurements.

Funding

Authors declare that this research did not receive grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aggarwal.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, R., Sankar, P.R., Sahu, A. et al. Template based room temperature growth of high density CdS nanowires from aqueous electrolyte using high frequency alternating current. J Mater Sci: Mater Electron 29, 427–435 (2018). https://doi.org/10.1007/s10854-017-7931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7931-1

Navigation