Skip to main content
Log in

Effect of thickness on tuning the perpendicular coercivity of Ta/CoFeB/Ta trilayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, a systematic study has been undertaken to explore the effect of magnetic layer film thickness on the structural, topographical, magnetic and electrical transport properties of the Ta(5 nm)/CoFeB(2–100 nm)/Ta(3 nm) trilayer. We show that the perpendicular coercivity (Hc) and the saturation magnetization (Ms) of Ta/CoFeB/Ta are very sensitive to the CoFeB film thickness. A large Hc with small Ms is realized for 50 nm thick CoFeB film at a growth temperature (Ts) of 475 °C. Hc started to develop at a considerable film thickness of 25 nm and reached a maximum at 50 nm and then decreased when the film thickness increased up to 100 nm. Magnetic studies of Ta/CoFeB (bottom) and CoFeB/Ta (top) interfaces confirm that the major contribution to the perpendicular coercivity of the stacks come from the bottom interface. The topography of the films is found to be affected by the film thicknesses. AFM displays larger grain sizes for thicker CoFeB films, however the nano crystallites embedded in the larger grains could not be detected by XRD analysis. The high resistivity values obtained from Hall resistivity measurements further confirms the non-crystalline nature of the CoFeB film. The presence of boron and other elements (Ta, Co, and Fe) are evident from the X-ray Photoelectron spectroscopic (XPS) studies. The Ta/CoFeB/Ta trilayer system being amorphous possessing high Hc, with small Ms can be enabled for the development of high-density data storage, spin logic gates and nonvolatile memories in low power consuming spintronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, Nat. Mater. 9, 721 (2010). doi:10.1038/nmat2804

    Article  Google Scholar 

  2. S.X. Huang, T.Y. Chen, C.L. Chien, Appl. Phys. Lett. 92, 242509 (2008). doi:10.1063/1.2949740

    Article  Google Scholar 

  3. C. Chappert, A. Fert, F.N.V. Dau, Nat. Mater. 6, 813 (2007). doi:10.1038/nmat2024

    Article  Google Scholar 

  4. S. Lihama, S. Mizukami, H. Naganuma, M. Oogane, Y. Ando, T. Miyazaki, Phys. Rev. B 89, 174416 (2014). doi:10.1103/PhysRevB.89.174416

    Article  Google Scholar 

  5. D.-T. Ngo, D.-T. Quach, Q.-H. Tran, K. Mølhave, T.-L. Phan, D.-H. Kim, J. Phys. D 47, 445001 (2014). doi:10.1088/0022-3727/47/44/445001

    Article  Google Scholar 

  6. S. Mangin, Y. Henry, D. Ravelosona, J.A. Katine, E.E. Fullerton, Appl. Phys. Lett. 94, 012502 (2009). doi:10.1063/1.3058680

    Article  Google Scholar 

  7. B.S. Tao, D.L. Li, Z.H. Yuan, H.F. Liu, S.S. Ali, J.F. Feng, H.X. Wei, X.F. Han, Y. Liu, Y.G. Zhao, Q. Zhang, Z.B. Guo, X.X. Zhang, Appl. Phys. Lett. 105, 102407 (2014). doi:10.1063/1.4895671

    Article  Google Scholar 

  8. T. Liu, Y. Zhang, J.W. Cai, H.Y. Pan, Sci. Rep. 4, 5895 (2014). doi:10.1038/srep05895

    Article  Google Scholar 

  9. A. Kaidatzis, C. Bran, V. Psycharis, M. Vázquez, J.M. García-Martín, D. Niarchos, Appl. Phys. Lett. 106, 262401 (2015). doi:10.1063/1.4923272

    Article  Google Scholar 

  10. Y. Liu, L. Hao, J. Cao, AIP Adv. 6, 045008 (2016). doi:10.1063/1.4947132

    Article  Google Scholar 

  11. B. Sun, G.Q. Li, W.X. Zhao, Z. Shen, Y.H. Liu, P. Chen, Mater. Lett. 123,221 (2014). doi:10.1016/j.matlet.2014.02.099

    Article  Google Scholar 

  12. L. Saravanan, K. Subha, M. Manivel Raja, C. Gopalakrishnan, H.A. Therese, J. Magn. Magn. Mater. 435, 81 (2017). doi:10.1016/j.jmmm.2017.03.069

    Article  Google Scholar 

  13. Y.-T. Chen, S.M. Xie, J. Nanomater. 2012, 486284 (2012) doi:10.1155/2012/486284

    Google Scholar 

  14. F.-T. Yuan, Y.-H. Lin, J.K. Mei, J.-H. Hsu, P.C. Kuo, J. Appl. Phys. 111, 07C111 (2012). doi:10.1063/1.3673408

    Article  Google Scholar 

  15. D.C. Worledge, G. Hu, D.W. Abraham, J.Z. Sun, P.L. Trouilloud, J. Nowak, S. Brown, M.C. Gaidis, E.J. O’Sullivan, R.P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011). doi:10.1063/1.3536482

    Article  Google Scholar 

  16. C.W. Cheng, W. Feng, G. Chern, C.M. Lee, T.H. Wu, J. Appl. Phys. 110, 033916 (2011). doi:10.1063/1.3621353

    Article  Google Scholar 

  17. D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, K. Ando, Appl. Phys. Lett. 86, 092502 (2005). doi:10.1063/1.1871344

    Article  Google Scholar 

  18. Y. Wu, X. Li, Q. Xiong, S. Gao, X. Xu, J. Miao, Y. Jiang, Phys. Status Solidi A 211, 606 (2014). doi:10.1002/pssa.201330199

    Article  Google Scholar 

  19. J.W. Cai, S. Okamoto, O. Kitakami, Y. Shimada, Phys. Rev. B 63, 104418 (2001). doi:10.1103/PhysRevB.63.104418

    Article  Google Scholar 

  20. W.X. Wang, Y. Yang, H. Naganuma, Y. Ando, R.C. Yu, X.F. Han, Appl. Phys. Lett. 99, 012502 (2011). doi:10.1063/1.3605564

    Article  Google Scholar 

  21. M. Yamanouchi, R. Koizumi, S. Ikeda, H. Sato, K. Mizunuma, K. Miura, H.D. Gan, F. Matsukura, H. Ohno, J. Appl. Phys. 109, 07C712 (2011). doi:10.1063/1.3554204

    Article  Google Scholar 

  22. Y.-H. Wang, W.-C. Chen, S.-Y. Yang, K.-H. Shen, C. Park, M.-J. Kao, M.-J. Tsai, J. Appl. Phys. 99, 08M307 (2006). doi:10.1063/1.2176108

    Article  Google Scholar 

  23. P.J. Metaxas, J.P. Jamet, A. Mougin, M. Cormier, J. Ferré, V. Baltz, B. Rodmacq, B. Dieny, R.L. Stamps, Phys. Rev. Lett. 99,217208 (2007). doi:10.1103/PhysRevLett.99.217208

    Article  Google Scholar 

  24. S. Fukami, T. Suzuki, Y. Nakatani, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, H. Ohno, Appl. Phys. Lett. 98, 082504 (2011). doi:10.1063/1.3558917

    Article  Google Scholar 

  25. M.T. Rahman, X. Liu, M. Matsumoto, A. Morisako, IEEE Trans. Magn. 41, 2568 (2005). doi:10.1109/TMAG.2005.854664

    Article  Google Scholar 

  26. M.D. Santis, R. Baudoing-Savois, P. Dolle, M.C. Saint-Lager, Phys. Rev. B 66, 085412 (2002). doi:10.1103/PhysRevB.66.085412

    Article  Google Scholar 

  27. C.M. Günther, O. Hellwig, A. Menzel, B. Pfau, F. Radu, D. Makarov, M. Albrecht, A. Goncharov, T. Schrefl, W.F. Schlotter, R. Rick, J. Lüning, S. Eisebitt, Phys. Rev. B 81, 064411 (2010). doi:10.1103/PhysRevB.81.064411

    Article  Google Scholar 

  28. H. Nomura, R. Nakatani, Appl. Phys. Exp. 4, 013004 (2011). doi:10.1143/APEX.4.013004

    Article  Google Scholar 

  29. C. Brombacher, M. Grobis, J. Lee, J. Fidler, T. Eriksson, T. Werner, O. Hellwig, M. Albrecht, Nanotechnology 23, 025301 (2012). doi:10.1088/0957-4484/23/2/025301

    Article  Google Scholar 

  30. R. Sbiaa, H. Meng, S.N. Piramanayagam, Phys. Stat. Sol. (RRL) 5, 413 (2011). doi:10.1002/pssr.201105420

    Article  Google Scholar 

  31. T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, T. Ono, Nat. Mater. 10, 194 (2011). doi:10.1038/NMAT2961

    Article  Google Scholar 

  32. D.-T. Ngo, Z.L. Meng, T. Tahmasebi, X. Yu, E. Thoeng, L.H. Yeo, A. Rusydi, G.C. Han, K.-L. Teo, J. Magn. Magn. Mater. 350, 42 (2014). doi:10.1016/j.jmmm.2013.08.063

    Article  Google Scholar 

  33. S.U. Jen, Y.D. Yao, Y.T. Chen, J.M. Wu, C.C. Lee, T.L. Tsai, Y.C. Chang, J. Appl. Phys. 99, 053701, (2006). doi:10.1063/1.2174113

    Article  Google Scholar 

  34. A.A. Greer et al., Appl. Phys. Lett. 101, 202402 (2012). doi:10.1063/1.4766351

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr.R.Ramesh babu and S. Raja for their support in Hall probe resistivity measurement at the school of physics, Bharathidasan University, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Therese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, L., Raja, M.M., Prabhu, D. et al. Effect of thickness on tuning the perpendicular coercivity of Ta/CoFeB/Ta trilayer. J Mater Sci: Mater Electron 29, 336–342 (2018). https://doi.org/10.1007/s10854-017-7921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7921-3

Navigation