Skip to main content
Log in

Thermal stability, phase composition and microwave dielectric properties of (3MgO–Al2O3–3TiO2)–CaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)(3MgO–Al2O3–3TiO2)–xCaTiO3 (0.1 ≤ x ≤ 0.3) composite ceramics were synthesized by a conventional solid state reaction method. The effects of CaTiO3 addition on the phase composition, microstructure and microwave dielectric properties of 3MgO–Al2O3–3TiO2 ceramics were investigated. X-ray diffraction patterns showed that the composite ceramics were made up of MgAl2O4, MgTiO3, MgTi2O5, CaTiO3 and a small amount of TiO2 phases. The addition of CaTiO3 could adjust the τ f and improve the ε r values of ceramics. The optimum microwave dielectric properties of ε r  = 17.6, Q × f = 36606 GHz and τ f  = +4.63 ppm/°C were obtained for the 0.8(3MgO–Al2O3–3TiO2) – 0.2CaTiO3 ceramics sintered at 1325 °C, which indicates that this material is a suitable material for microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Z. Wang, C. Yuan, Q. Li, Q. Feng, Effects of Bi3+ substitution on microwave dielectric properties of (Ce1−x Bi x )0.2Sr0.7TiO3 ceramics. J. Mater. Sci. 28, 9941–9949 (2017)

    Google Scholar 

  2. W. Lei, R. Ang, X.C. Wang, W.Z. Lu, Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)

    Article  Google Scholar 

  3. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic. J. Eur. Ceram. Soc. 32, 261–265 (2012)

    Article  Google Scholar 

  4. H.F. Zhou, X.L. Chen, L. Fang, W. Wang, Ca(Zn1/3Nb2/3–x V x )O3 solid solution: microstructural evolution, optimized sintering behavior and microwave dielectric properties. Ceram. Int. 40, 3737–3741 (2014)

    Article  Google Scholar 

  5. W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Microwave dielectric properties of ZnAl2 O4-TiO2 spinel-based composites. Mater. Lett. 61, 4066–4069 (2007)

    Article  Google Scholar 

  6. K.A. Nekouee, R.A. Khosroshahi, R.T. Mousavian, N. Ehsani, Sintering behavior and microwave dielectric properties of SiO2-MgO-Al2O3-TiO2 ceramics. J. Mater. Sci. 27, 3570–3575 (2016)

    Google Scholar 

  7. J.S. Chen, G.H. Chen, X.L. Kang, Y. Luo, Y. Yang, Microstructure and microwave dielectric properties of BaNd2Ti1−x Al4x/3O12 ceramics. J. Mater. Sci. 27, 8234–8241 (2016)

    Google Scholar 

  8. R.K. Bhuyan, T.S. Kumar, D. Goswami, A.R. James, A. Perumal, D. Pamu, Enhanced densification and microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles. Mater. Sci. Eng. B 178, 471–476 (2013)

    Article  Google Scholar 

  9. H. Zhuang, Z. Yue, S. Meng, F. Zhao, L. Li, Low-temperature sintering and microwave dielectric properties of Ba3(VO4)2-BaWO4 ceramic composites. J. Am. Ceram. Soc. 91, 3738–3741 (2008)

    Article  Google Scholar 

  10. I.S. Cho, D.W. Kim, J.R. Kim, K.S. Hong, Low-temperature sintering and microwave dielectric properties of BaO-(Nd1–x Bi x )2O3-4TiO2 by the glass additions. Ceram. Int. 30, 1181–1185 (2004)

    Article  Google Scholar 

  11. X.C. Wang, W. Lei, R. Ang, W.Z. Lu, ZnAl2O4-TiO2-SrAl2Si2O8 low-permittivity microwave dielectric ceramics. Ceram. Int. 39, 1707–1710 (2013)

    Article  Google Scholar 

  12. O.V. Ovchar, O.I. V’yunov, D.A. Durilin, Y.D. Stupin, A.G. Belous, Synthesis and microwave dielectric properties of MgO-TiO2-SiO2 ceramics. Inorg. Mater. 40, 1116–1121 (2004)

    Article  Google Scholar 

  13. J. Huang, H.F. Zhou, N. Wang, X.H. Tan, G.C. Fan, Preparation, structure and microwave dielectric properties of 3MgO–Al2O3–3TiO2 ceramics. J. Mater. Sci. 28, 4565–4569 (2017)

    Google Scholar 

  14. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)

    Article  Google Scholar 

  15. I. Kim, W.H. Jung, Y. Inaguma, T. Nakamura, M. Itoh, Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system (1 − x)La2/3TiO3-xCaTiO3 (0.1 ≤ x ≤ 0.96). Mater. Res. Bull. 30, 307–316 (1995)

    Article  Google Scholar 

  16. N. Santha, I.N. Jawahar, P. Mohanan, M.T. Sebastian, Microwave dielectric properties of (1 − x)CaTiO3-xSm(Mg1/2Ti1/2)O3 (0.1 ≤ x ≤ 1) ceramics. Mater. Lett. 54, 318–322 (2002)

    Article  Google Scholar 

  17. J. Krupka, Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 79, 195–198 (2003)

    Google Scholar 

  18. I.M. Reaney, P. Wise, R. Ubic, J. Breeze, N.M. Alford, D. Iddles, D. Cannell, T. Price, On the temperature coefficient of resonant frequency in microwave dielectrics. Philos. Mag. A 81, 501–510 (2001)

    Article  Google Scholar 

  19. J.Z. Gong, H.F. Zhou, F. He, Structural evolution, low-firing characteristic and microwave dielectric properties of magnesium and sodium vanadate ceramic. Ceram. Int. 41, 11125–11131 (2015)

    Article  Google Scholar 

  20. M. Li, A. Feteira, M. Mirsaneh, S. Lee, M.T. Lanagan, C.A. Randall, D.C. Sinclair, Influence of nonstoichiometry on extrinsic electrical conduction and microwave dielectric loss of BaCo1/3Nb2/3O3 ceramics. J. Am. Ceram. Soc. 93, 4087–4095 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 11464009 and 11364012), Natural Science Foundation of Guangxi (No. 2015GXNSFDA139033), and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanfu Zhou or Hong Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Huang, J., Tan, X. et al. Thermal stability, phase composition and microwave dielectric properties of (3MgO–Al2O3–3TiO2)–CaTiO3 ceramics. J Mater Sci: Mater Electron 28, 17009–17013 (2017). https://doi.org/10.1007/s10854-017-7623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7623-x

Navigation