Skip to main content
Log in

Effect of donor and acceptor co-doping in (Na0.52 K0.48) (Nb0.95 Sb0.05)O3 lead-free piezoceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study highlights the effect of donor (Sr2+) and acceptor (Zr4+) co-doping on phase formation, microstructure, density, ferroelectric, dielectric, piezoelectric, fatigue and aging properties of (Na0.52 K0.48)(Nb0.95 Sb0.05)O3, abbreviated as NKNS, lead free piezoelectric ceramics. The composition (1–x)(NKNS)—xSrZrO3 (where x = 0.0, 0.02, 0.04, 0.06 and 0.08) were synthesized by mixed oxide route. The doping drastically affected the phase formation and the microstructure. The poling studies suggested that the material requires higher poling temperature (120 °C) for optimum properties. At the small concentration of SrZrO3, the dominant effect of acceptor doping induced ‘hybrid’ piezoelectric behavior which improved fatigue, ageing and piezoelectric properties. The mechanical quality factor (Qm) more than doubled (96) and piezoelectric charge co-efficient peaked to 157 × 10 −12 C/N for 2% SrZrO3. The study of Raman spectra ascertained that the doping influenced the nature of B–O bonding. The electrical fatigue behavior in conjunction with ferroelectric studies confirmed that due to complex doping different mechanisms work to stabilize the polarization state which influenced the ageing and fatigue behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.H. Heartling, J. Am. Ceram. Soc. 82(4), 797 (1999). doi:10.1111/j.1151-2916.1999.tb01840.x

    Article  Google Scholar 

  2. S.T. Lau, C.H. Cheng, S.H. Choy, D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 103, 104105 (2008). doi:10.1063/1.2927252

    Article  Google Scholar 

  3. P. Kumari, R. Rai, S. Sharma, M. Shandilya, A. Tiwari, Adv. Mater. Lett. 6, 453 (2015). doi:10.5185/amlett.2015.4086

    Article  Google Scholar 

  4. Y. Gong, G. Yang, X. Li, L. Gong, L. Li, J. Peng, X. Zheng, J. Mater. Sci. 23, 1910 (2012). doi:10.1007/s10854-012-0879-2

    Google Scholar 

  5. X. Vendrell, J.E. Gorcia, X. Brill, D.A. Ochoa, L. Mestres, G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015). doi:10.1016/j.jeurceramsoc.2014.08.033

    Article  Google Scholar 

  6. J.B. Lim, S. Zhang, J.-H. Jeon, T.R. Shrout, J. Am. Ceram. Soc. (2010). doi:10.1111/j.1551-2916.2009.03528.x

    Google Scholar 

  7. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971), pp. 150–250

    Google Scholar 

  8. R.A. Eichel, H. Kungl, M.J. Hoffmann, J. Appl. Phys. 95, 8092 (2004). doi:10.1063/1.1728310

    Article  Google Scholar 

  9. R.A. Eichel, P. Erhart, P. Traskelin, K. Albe, H. Kungl, M.J. Hoffmann, Phys. Rev. Lett. 100, 095504 (2008). doi:10.1103/PhysRevLett.100.095504

    Article  Google Scholar 

  10. B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. Eur. Ceram. Soc. 25, 2707 (2005). DOI:10.1016/j.jeurceramsoc.2005.03.127

    Article  Google Scholar 

  11. N.M. Hagh, B. Jadidian, E. Ashbahian, A. Safari, IEEE Trans. Ultrason. Ferroelectr. FrEq. Control 55(1), 212 (2008). doi:10.1109/TUFFC.2008.630

    Article  Google Scholar 

  12. B.W. Lee, E.J. Lee, J. Electroceram. 17, 597 (2006). doi:10.1007/s10832-006-8568-2

    Article  Google Scholar 

  13. E. Erdem, R.A. Eichel, H. Kungl, M.J. Hoffmann, A. Ozarowski, J. V. Tol, L.C. Brunel, IEEE Trans. Ultrason. Ferroelectr. FrEq. Control 55(5), 1061 (2008). doi:10.1109/TUFFC.2008.757

    Article  Google Scholar 

  14. B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, Phys. Rev. B 59(6), 4023 (1999). doi:10.1103/PhysRevB.59.4023

    Article  Google Scholar 

  15. A. Ahtee, M. Ahtee, A.M. Glazer, A.W. Hewat, J. Acta Crystallogr. B32, 3243 (1976). doi:10.1107/S0567740876010029

    Article  Google Scholar 

  16. R.D. Shannon, Acta Cryst. A 32, 751 (1976). doi:10.1107/S0567739476001551.

    Article  Google Scholar 

  17. R. Zuo, M. Wang, B. Ma, J. Fu, T. Li, J. Phys. Chem. Solids 70, 750 (2009). doi:10.1016/j.jpcs.2009.03.003

    Article  Google Scholar 

  18. Q. Li, M.H. Zhang, Z.X. Zhu, K. Wang, J.S. Zhou, F.Z. Yao, J.F. Li, J. Mater. Chem. C 5, 549 (2017). doi:10.1039/C6TC04723H

    Article  Google Scholar 

  19. J.L. Jones, B.J. Iverson, K.J. Bowman, J. Am. Ceram. Soc. 90(8), 2297 (2007). doi:10.1111/j.1551-2916.2007.01820.x

    Article  Google Scholar 

  20. Y. Li, J. Yuan, D. Wang, D. Zhang, H. Jin, M. Cao, J. Am. Ceram. Soc. 96(11), 3440 (2013). doi:10.1111/jace.12479

    Article  Google Scholar 

  21. S. Zhang, J.B. Lim, H.J. Lee, T.R. Shrout, IEEE trans. Ultrason. Ferroelectr. FrEq. Control 56(8), 1523 (2009). doi:10.1109/TUFFC.2009.1215

    Article  Google Scholar 

  22. H.E. Mgbemere, R.P. Herber, G.A. Schneider, J. Eur. Ceram. Soc. 29(9), 1729 (2009). doi:10.1016/j.jeurceramsoc.2008.10.012

    Article  Google Scholar 

  23. V.M. Goldschmidt, Naturwissenschaften 21, 477 (1926). DOI:10.1007/BF01507527

    Article  Google Scholar 

  24. Y. Na, J. Abolfazl, Z. Lanling, G. Zhigang, C. Zhenxiang, W. Xiaolin, J. Alloys Compd. 652, 341 (2015). doi:10.1016/j.jallcom.2015.08.222

    Article  Google Scholar 

  25. R.C. Cohen, Nature 358, 136 (1992). doi:10.1038/358136a0

    Article  Google Scholar 

  26. M.M. Shamim, T. Ishidate, K. Ohi, J. Phys. Soc. Jpn. 72(3), 551 (2003). doi:10.1143/JPSJ.72.551

    Article  Google Scholar 

  27. H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006). doi:10.1016/j.jeurceramsoc.2004.11.022

    Article  Google Scholar 

  28. U. Robels, G. Arlt, J. Appl. Phys. 73, 3454 (1993). doi:10.1063/1.352948

    Article  Google Scholar 

  29. K. Carl, K.H. Hardtl, Ferroelectrics 17, 473 (1977). doi:10.1080/00150197808236770

    Article  Google Scholar 

  30. Z. Luo, T. Granzow, J. Glaum, W. Jo, J. Rödel, M. Hoffman, J. Am. Ceram. Soc. 94(11) 3927 (2011). doi:10.1111/j.1551-2916.2011.04605.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Director, Armament Research and Development Establishment for extending his support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupender Rawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawal, B., Wathore, N.N., Praveenkumar, B. et al. Effect of donor and acceptor co-doping in (Na0.52 K0.48) (Nb0.95 Sb0.05)O3 lead-free piezoceramic. J Mater Sci: Mater Electron 28, 16426–16432 (2017). https://doi.org/10.1007/s10854-017-7553-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7553-7

Navigation