Skip to main content
Log in

Synthesis and formation mechanism of micron-size silver flakes with high radius-thickness ratio: application to silver paste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Micron-size ultrathin silver flakes were synthesized via a simple and environmentally friendly approach. The microstructure of ultrathin silver flakes was determined by some dominant parameters, including the pH value of solution, the adding speed of silver nitrate, and the dosage of polyvinyl alcohol (PVA-124). The detailed characterization revealed that the as-synthesized silver flakes were typical 2–3 µm in diameter and 50–100 nm in thickness. And the flake-particle ratio was over 80%. Meanwhile, a possible formation mechanism of the silver flakes has been briefly discussed based upon the morphology evolution of silver flakes at different growth stages. Moreover, the ultrathin silver flakes conductive pastes dried at low temperature exhibited a good conductivity of 4.3 × 10−4 Ω·m even after 100 days, indicating their wide potential applications in the electronic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Mulvaney, Langmuir 12, 788 (1996)

    Article  Google Scholar 

  2. S. De, A. Pal, N.R. Jana, T. Pal, J. Photoch. Photobiol. A 131, 111 (2000)

    Article  Google Scholar 

  3. Y.G. Sun, B.T. Mayers, Adv. Mater. 15, 641 (2003)

    Article  Google Scholar 

  4. Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, P. Yang, J. Am. Chem. Soc. 123, 9904 (2001)

    Article  Google Scholar 

  5. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 6755 (2002)

    Article  Google Scholar 

  6. X. He, X.J. Zhao, Appl. Surf. Sci. 255, 7361 (2009)

    Article  Google Scholar 

  7. P. Yang, Y. Chen, X. Yu, et al., Nano Energy 10, 108 (2014)

    Article  Google Scholar 

  8. P. Yang, Y. Ding, Z. Lin, et al, Nano Lett. 14, 731 (2014)

    Article  Google Scholar 

  9. M.A. El-sayed, Acc. Chem. Res. 34, 257 (2001)

    Article  Google Scholar 

  10. C. Burda, X.B. Chen, R. Narayanan, M.A. El Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  11. Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536 (2002)

    Article  Google Scholar 

  12. B.H. Kim, J.S. Lee, Mater. Chem. Phys. 149, 678 (2015)

    Article  Google Scholar 

  13. R. Jin, Y. Cao, C.A. Mirkin, et al., Science 294, 1901 (2001)

    Article  Google Scholar 

  14. L. Liu, C.A. Burnyeat, R.S. Lepsenyi, et al., Chem. Mater. 25, 4206 (2015)

    Article  Google Scholar 

  15. I. Tanabe, K. Matsubara, N. Sakai, et al., J. Phys. Chem. C 115, 1695 (2017)

    Article  Google Scholar 

  16. Y. Sun, Y. Xia, Adv. Mater. 15, 695 (2003)

    Article  Google Scholar 

  17. L. S, M.A. Elsayed, J. Phys. Chem. B 103, 8410 (2000)

    Google Scholar 

  18. M. Marus, A. Hubarevich, H. Wang, et al., Opt. Exp. 23, 6209 (2015)

    Article  Google Scholar 

  19. Z. Li, F. Hao, Y. Huang, et al., Nano Lett. 9, 4383 (2016)

    Article  Google Scholar 

  20. F. Guo, H. Azimi, Y. Hou, et al., Nanoscale 7, 1642 (2015)

    Article  Google Scholar 

  21. X.C. Yang, Y. Lu, M.T. Wang, et al., Opt. Commun. 359, 279 (2016)

    Article  Google Scholar 

  22. L. Shen, L. Du, S. Tan, et al., Chem. Commun. 52, 6296 (2016)

    Article  Google Scholar 

  23. G.L. Zhang, C.Y. Deng, H.L. Shi, B. Zhou, Y.C. Li, T.T. Liu, W.Z. Wang, Appl. Surf. Sci. 402, 154 (2017)

    Article  Google Scholar 

  24. Z.B. Li, G.W. Meng, T. Liang, Z. Zhang, X.G. Zhu, Appl. Surf. Sci. 264, 383 (2013)

    Article  Google Scholar 

  25. Z. Golrokhi, P.A. Marshall, S. Roman, S. Rushworth, P.R. Chalker, R.J. Potter, Appl. Surf. Sci. 399, 123 (2017)

    Article  Google Scholar 

  26. B.W. Yang, Z.M. Liu, Z.Y. Guo, W. Zhang, M.M. Wan, X.C. Qin, H.Q. Zhong, Appl. Surf. Sci. 316, 22 (2014)

    Article  Google Scholar 

  27. Y. Reyes-Vidal, R. Suarez-Rojas, C. Ruiz, J. Torres, G. Trejo, Appl. Surf. Sci. 342, 34 (2015)

    Article  Google Scholar 

  28. F. Liu, Chin. J. Spectrosc. Lab. 28, 735 (2011)

    Google Scholar 

  29. I. Kim, S. Chun, J. Electron. Mater. 40, 1977 (2011)

    Article  Google Scholar 

  30. F. Huang, W. Li, Q. Xiong, X. Li, T. Yan, Precious Met. 33, 30 (2012)

    Google Scholar 

  31. C. Shi, S. Liang, X. Zhu, Chin. J. Rare Met. 258, 6 (2015)

    Google Scholar 

  32. J. Yang, L. Lu, H. Wang, W. Shi, H. Zhan, Cryst. Growth Des. 9, 2155 (2006)

    Article  Google Scholar 

  33. A.X. Zhai, X.H. Cai, U.D. Bin. Trans. Nonferrous Met. Soc. China 24, 1452 (2014)

    Article  Google Scholar 

  34. J. Wang, H. Wang, X. Jing, J. Huang, D. Sun, China Sciencepaper 2095, 6 (2015)

    Google Scholar 

  35. W. Ju, W. Ma, D. Peng, Q. Mu, F. Zhang, Precious Met. 2, 29 (2015)

    Google Scholar 

  36. I. Washio, Y. Xiong, Y. Yin, Y. Xia, Adv. Mater. 18, 1745 (2006)

    Article  Google Scholar 

  37. J.Y. Duan, Acta Phys.-Chim. Sin. 25, 1405 (2009)

    Google Scholar 

  38. C.Q. Yu, S. Yin, X.M. Ren, D. Wu, X.L. Yu, Z.C. Duan, H. Luo, C.Q. Wang, Electr. Eng. Mater. 1671, 05 (2015)

    Google Scholar 

  39. D. Pitea, M. Lasagni, E. Collina, WO 015534 (2008)

  40. C. Baker, L. Karpowich, W. Zhang, IEEE Conference on Photovoltaic Specialist (2015), pp. 1–3

  41. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 7734 (2003)

    Article  Google Scholar 

  42. R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science 294, 1901 (2001)

    Article  Google Scholar 

  43. K. Torigoe, K. Esumi, Langmuir 16, 2604 (2000)

    Article  Google Scholar 

  44. N. Aihara, K. Torigoe, K. Esumi, Langmuir 14, 4945 (1998)

    Article  Google Scholar 

  45. M. Maillard, P. Huang, L. Brus, Nano Lett. 3, 1611 (2003)

    Article  Google Scholar 

  46. Y. Sun, B. Mayers, Y. Xia, Nano Lett. 3, 955 (2003)

    Article  Google Scholar 

  47. Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21363011), the Applied Basic Research Foundation of Yunnan Province (Grant No. 2016FD126), the Research Foundation of Key New Products of Yunnan Province (Grant No. 2016BA007), and the Research Foundation of Institute of Yunnan Province (2016DC033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Fang, W., Li, Y. et al. Synthesis and formation mechanism of micron-size silver flakes with high radius-thickness ratio: application to silver paste. J Mater Sci: Mater Electron 28, 16267–16273 (2017). https://doi.org/10.1007/s10854-017-7532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7532-z

Navigation