Skip to main content
Log in

The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Au/n-Si(MS) and Au/(0.07graphene-PVA)/n-Si(MPS) structures were fabricated on the same wafer at identical conditions and their electrical characteristics have been investigated by using current–voltage (I–V) and capacitance/conductance–voltage(C/G–V) measurements at room temperature. The rectifying rate(RR at ±5 V), barrier height(Φ Bo ) and surface states(N ss ) (at 0.5 eV) for MS structure were found from the I–V measurements as 1.96 × 103, 0.757 eV and 9.67 × 1014 eV−1 cm−2 for MS whereas those for MPS structure were 9.67 × 105, 0.790 eV and 1.04 × 1013 eV−1 cm−2, respectively. The reverse current mechanisms were also discussed by considering Poole–Frenkel and Schottky emissions. The values of RR and N ss of MPS structure are 493.37 times higher and 92.98 times lower than these values of MS structure. The values of doping atoms (N D ), Fermi energy (E F ) and BH were extracted from the reverse bias C −2 –V characteristics at 1 MHz as 2.42 × 1015 cm−3, 0.260 and 0.994 eV for the MS and 0.856 × 1015 cm−3, 0.234 and 0.828 eV for the MPS structures, respectively. These results show that the use of (graphene-PVA) interlayer improves the performance of MS structure and so it may be good alternative to replace the conventional SiO2 due to reduce the number of oxygen vacancies and yields low density of N ss , and increase the BH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.R. Reddy, Thin Solid Films 556, 300 (2014)

    Article  Google Scholar 

  2. A. Kaya, E. Marıl, Ş. Altındal, İ. Uslu, Microelectron. Eng. 149, 166 (2016)

    Article  Google Scholar 

  3. A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytemur, Ceram. Int. 42, 3322 (2016)

    Article  Google Scholar 

  4. S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ. Uslu, Results Phys. 6, 180 (2016)

    Article  Google Scholar 

  5. M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Curr. Appl. Phys. 12, 525 (2012)

    Article  Google Scholar 

  6. O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, İ. Orak, Ş. Altındal, Compos. Part B 113, 14 (2017)

    Article  Google Scholar 

  7. S.A. Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. (2016). doi:10.1002/APP.43827

    Google Scholar 

  8. A.F. Özdemir, S.G. Aydın, D.A. Aldemir, Ş.S. Görsoy, Synth. Met. 161, 692 (2011)

    Article  Google Scholar 

  9. S.M. Sze, in Physics of Semiconductor Devices. (Wiley, Toronto, 1981)

    Google Scholar 

  10. C.V.S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Microelectron. Eng. 83, 281 (2006)

    Article  Google Scholar 

  11. H. Uslu, Ş. T. Altindal, Tunç, İ. Uslu, T.S. Mammadov, J. Appl. Polym. Sci. 120, 322 (2011)

    Article  Google Scholar 

  12. R.T. Tung, Mat. Sci. Eng. 35, 1 (2001)

    Article  Google Scholar 

  13. Ç. Bilkan, S. Zeyrek, S.E. San, Ş. Altındal, Mater. Sci. Semicond. Process. 32, 137 (2015)

    Article  Google Scholar 

  14. Ö. Gülü, Ş. Aydoğan, A. Türüt, Thin Solid Films 520, 1944 (2012)

    Article  Google Scholar 

  15. J.H. Werner, H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    Article  Google Scholar 

  16. E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, Sens. Actuators A. Phys. 194, 259 (2013)

    Article  Google Scholar 

  17. M.S.P. Reddy, H.S. Kang, J.H. Lie, V.R. Reddy, J.S. Jang, Appl. Polym. Sci. 131, 39773 (2014)

    Google Scholar 

  18. V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Superlattices Microstruct. 67, 242 (2014)

    Article  Google Scholar 

  19. Ş.A. Yasemin, T. Asar, S. Altındal, S. Özçelik, Philos. Mag. 95, 2885 (2015)

    Article  Google Scholar 

  20. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  Google Scholar 

  21. A.F. Özdemir, A. Turut, A. Kökçe, Semicond. Sci. Technol. 21, 298 (2006)

    Article  Google Scholar 

  22. T. Tunc, Ş. Altındal, I. Uslu, I. Dökme, Mater. Sci. Semicond. Process. 14, 139 (2011)

    Article  Google Scholar 

  23. U. Aydemir, İ. Taşçıoğlu, Ş. Altındal, İ. Uslu, Mater. Sci. Semicond. Process. 16, 1865 (2013)

    Article  Google Scholar 

  24. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. (Wiley, New York, 1982)

    Google Scholar 

  25. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  Google Scholar 

  26. S.K. Cheung, N.V. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  Google Scholar 

  27. K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986)

    Article  Google Scholar 

  28. B.H. Lee, Y. Jeon, K. Zawadzki, W.J. Qi, J. Lee, Appl. Phys. Lett. 74, 3143 (1999)

    Article  Google Scholar 

  29. Y.P. Song, R.L. Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 29, 633 (1986)

    Article  Google Scholar 

  30. İ. Taşçıoğlu, W.A. Farooq, R. Turan, Ş. Altındal, F. Yakuphanoğlu, J. Alloys Compd. 590, 157 (2014)

    Article  Google Scholar 

  31. M. Yıldırım, M. Gökçen, Bull. Mater. Sci. 37, 257 (2014)

    Article  Google Scholar 

  32. M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Mater. Sci. Eng. B 177, 416 (2012)

    Article  Google Scholar 

  33. A. Tataroğlu, Chin. Phys. B 22, 068402 (2013)

    Article  Google Scholar 

  34. E. Arslan, S. Bütün, Y. Şafak, H. Uslu, İ. Taşçıoğlu, Ş. Altındal, Microelectron. Reliab. 51, 370 (2011)

    Article  Google Scholar 

  35. Ş. M. Aydoğan, Sağlam, A. Türüt, Polymer 46, 563 (2005)

    Article  Google Scholar 

  36. J.P. Sulivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    Article  Google Scholar 

  37. J. Osvald, E. Burain, Solid State Electron. 42, 19 (1998)

    Article  Google Scholar 

  38. Ş. Karataş, N. Yıldırım, A. Türüt, Superlattices Microstruct. 64, 483 (2013)

    Article  Google Scholar 

  39. S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, J. Mater. Sci. (2017). doi:10.1007/s10854-016-4843-4

    Google Scholar 

  40. H.G. Çetinkaya, Ş. J. Altındal, İ. Orak, İ. Uslu, Mater. Sci. (2017). doi:10.1007/s10854-017-6490-9

    Google Scholar 

  41. V.R. Reddy, V. Manjunath, V. Janardhanam, Y. Ho Kil, C.J. Choi, J. Electron. Mater. (2014). doi:10.1007/s11664-014-3177-3

    Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project (Project Number: GU-BAP. 06/201613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Balbaşı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerişkin, S.A., Balbaşı, M. & Orak, İ. The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J Mater Sci: Mater Electron 28, 14040–14048 (2017). https://doi.org/10.1007/s10854-017-7255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7255-1

Navigation