Skip to main content
Log in

Cu(II) cocatalyst modified Ag@AgCl cubic cages with enhanced visible light photocatalytic activity and stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile, template-assisted synthetic route was applied to synthesize Ag@AgCl cubic cages. Ag@AgCl was modified with Cu(II) cocatalyst by a simple impregnation route. The obtained Cu(II)–Ag@AgCl showed excellent photocatalytic activity for the decolorization of methyl orange (MO). MO was completely decolorized under visible light within 120 s. Phenol was completely decomposed in 40 min. A possible mechanism was proposed: Cu(II) cocatalyst worked as a reduction active site through a self-recovery process. Electrons were transferred from valence band of AgCl efficiently, and then reacted with oxygen through a multi-electron oxygen reduction process. ·OH radicals were confirmed as the main active species for the degradation of organics while ·O2 radicals were absent compared to Ag@AgCl. The modification of Cu(II) cocatalyst significantly enhanced visible light catalysis activity and stability of Ag@AgCl. Compared with frequently-used noble metal cocatalyst, the cheap and abundant Cu(II) cocatalyst shows huge potential in design and synthesis high photocatalytic performance materials for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)

    Article  Google Scholar 

  2. Q. Xiang, B. Cheng, J. Yu, Angew. Chem. Int. Ed. 54, 11350 (2015)

    Article  Google Scholar 

  3. G. Yin, M. Nishikawa, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, M. Miyauchi, ACS Nano 9, 2111 (2015)

    Article  Google Scholar 

  4. S. Wang, L. Pan, J.-J. Song, W. Mi, J.-J. Zou, L. Wang, X. Zhang, J. Am. Chem. Soc. 137, 2975 (2015)

    Article  Google Scholar 

  5. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114, 9824 (2014)

    Article  Google Scholar 

  6. W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Appl. Catal. B 179, 106 (2015)

    Article  Google Scholar 

  7. C. Han, L. Ge, C. Chen, Y. Li, Z. Zhao, X. Xiao, Z. Li, J. Zhang, J. Mater. Chem. 2, 12594 (2014)

    Article  Google Scholar 

  8. J. Yu, G. Dai, B. Huang, J. Phys. Chem. C 113, 16394 (2009)

    Article  Google Scholar 

  9. G. Luo, X. Jiang, M. Li, Q. Shen, L. Zhang, H. Yu, ACS Appl. Mater. Interfaces 5, 2161 (2013)

    Article  Google Scholar 

  10. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Angew. Chem. Int. Ed. 47, 7931 (2008)

    Article  Google Scholar 

  11. M. Su, H. Liu, J. Ma, J. Mater. Sci. Electron. 27, 10707 (2016)

    Article  Google Scholar 

  12. Z. Zarghami, M. Ebadi, K. Motevalli, M. Aliabadi, J. Mater. Sci. Electron. 27, 1087 (2016)

    Article  Google Scholar 

  13. P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M.-H. Whangbo, Chem-Eur. J. 15, 1821 (2009)

    Article  Google Scholar 

  14. H. Yu, L. Xu, P. Wang, X. Wang, J. Yu, Appl. Catal. B 144, 75 (2014)

    Article  Google Scholar 

  15. P. Wang, B. Huang, Q. Zhang, X. Zhang, X. Qin, Y. Dai, J. Zhan, J. Yu, H. Liu, Z. Lou, Chem-Eur. J. 16, 10042 (2010)

    Article  Google Scholar 

  16. Y. Wang, J. Mater. Sci. Electron. 27, 10122 (2016)

    Article  Google Scholar 

  17. C. Hu, T. Peng, X. Hu, Y. Nie, X. Zhou, J. Qu, H. He, J. Am. Chem. Soc. 132, 857 (2010)

    Article  Google Scholar 

  18. H. Yu, L. Liu, X. Wang, P. Wang, J. Yu, Y. Wang, Dalton Trans. 41, 10405 (2012)

    Article  Google Scholar 

  19. Y. Liang, H. Wang, L. Liu, P. Wu, W. Cui, J.G. McEvoy, Z. Zhang, J. Mater. Sci. 50, 6935 (2015)

    Article  Google Scholar 

  20. Y. Li, Z.-Y. Fu, B.-L. Su, Adv. Funct. Mater. 22, 4634 (2012)

    Article  Google Scholar 

  21. C. Li, Y. Han, G. Zhao, J. Mater. Sci. Electron. 28, 1895 (2017)

    Article  Google Scholar 

  22. Z. Zhao, Y. Wang, J. Xu, C. Shang, Y. Wang, Appl. Surf. Sci. 351, 416 (2015)

    Article  Google Scholar 

  23. Y. Zhao, C. Lin, H. Bi, Y. Liu, Q. Yan, Appl. Surf. Sci. 392, 701 (2017)

    Article  Google Scholar 

  24. L. Kuai, B. Geng, X. Chen, Y. Zhao, Y. Luo, Langmuir 26, 18723 (2010)

    Article  Google Scholar 

  25. B. Ma, J. Guo, W.-L. Dai, K. Fan, Appl. Catal. B 130–131, 257 (2013)

    Article  Google Scholar 

  26. J. Gamage McEvoy, W. Cui, Z. Zhang, Appl. Catal. B 144, 702 (2014)

    Article  Google Scholar 

  27. S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C. Boey, X. Chen, ACS Nano 5, 3831 (2011)

    Article  Google Scholar 

  28. Y. Zhang, Y. Tang, S. Yin, Z. Zeng, H. Zhang, C.M. Li, Z. Dong, Z. Chen, X. Chen, Nanoscale 3, 4074 (2011)

    Article  Google Scholar 

  29. Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15, 641 (2003)

    Article  Google Scholar 

  30. M. Ebadi, Z. Zarghami, M. Aliabadi, J. Mater. Sci. Electron. 27, 1622 (2016)

    Article  Google Scholar 

  31. W. Cui, X. Li, C. Gao, F. Dong, X. Chen, Catal. Today 284, 67 (2017)

    Article  Google Scholar 

  32. X. Xiao, L. Ge, C. Han, Y. Li, Z. Zhao, Y. Xin, S. Fang, L. Wu, P. Qiu, Appl. Catal. B 163, 564 (2015)

    Article  Google Scholar 

  33. Z. Zhou, M. Long, W. Cai, J. Cai, J. Mol. Catal. A 353–354, 22 (2012)

    Article  Google Scholar 

  34. Y. Chen, G. Zhu, Y. Liu, J. Gao, C. Wang, R. Zhu, P. Liu, J. Mater. Sci. 28, 2859 (2017)

    Google Scholar 

  35. B. Ma, J. Guo, W.-L. Dai, K. Fan, Appl. Catal. B 123–124, 193 (2012)

    Article  Google Scholar 

  36. W. Cui, H. Wang, L. Liu, Y. Liang, J.G. McEvoy, Appl. Surf. Sci. 283, 820 (2013)

    Article  Google Scholar 

  37. H. Li, F. Ren, J. Liu, Q. Wang, Q. Li, J. Yang, Y. Wang, Appl. Catal. B 172–173, 37 (2015)

    Google Scholar 

  38. P. Wang, Y. Xia, P. Wu, X. Wang, H. Yu, J. Yu, J. Phys. Chem. C 118, 8891 (2014)

    Article  Google Scholar 

  39. Y. Tang, Z. Jiang, G. Xing, A. Li, P.D. Kanhere, Y. Zhang, T.C. Sum, S. Li, X. Chen, Z. Dong, Z. Chen, Adv. Funct. Mater. 23, 2932 (2013)

    Article  Google Scholar 

  40. S. Zhang, S. Zhang, L. Song, J. Hazard. Mater. 293, 72 (2015)

    Article  Google Scholar 

  41. R. Dong, B. Tian, C. Zeng, T. Li, T. Wang, J. Zhang, J. Phys. Chem. C 117, 213 (2013)

    Article  Google Scholar 

  42. H. Irie, S. Miura, K. Kamiya, K. Hashimoto, Chem. Phys. Lett. 457, 202 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51134011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Song, L., Chen, C. et al. Cu(II) cocatalyst modified Ag@AgCl cubic cages with enhanced visible light photocatalytic activity and stability. J Mater Sci: Mater Electron 28, 12572–12579 (2017). https://doi.org/10.1007/s10854-017-7081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7081-5

Keywords

Navigation