Skip to main content
Log in

The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CoFe2 attached single-walled carbon nanotubes (CoFe2@SWCNTs) and BaFe12O19 ferrite nanocomposites with different CoFe2@SWCNTs weight ratios (1, 3, 5, 7 wt%) were synthesized by a simple combination process. Then, the electromagnetic and microwave absorption properties were systematically investigated by a vector network analyzer in the frequency range of 2–18 GHz. High-quality CoFe2@SWCNTs were prepared by a direct current arc discharge method in one-step. BaFe12O19 nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The CoFe2@SWCNT/BaFe12O19 nanocomposites exhibited an efficient reflection loss (RL) and a wide absorption bandwidth. The minimum RL of −54.13 dB was observed at 11.84 GHz for the nanocomposite (5 wt% CoFe2@SWCNTs) with a thickness of 2.8 mm, 3.4 times greater than those without CoFe2@SWCNTs, and a broad absorption bandwidth of 4.64 GHz (<−10 dB) was achieved. In addition, the nanocomposite (1 wt% CoFe2@SWCNTs) shows a broader effective microwave absorption bandwidth of 7.12 GHz with a thickness of 1.9 mm. The experimental results reveal that the absorbing properties of the nanocomposites are greatly improved by controlling the CoFe2@SWCNTs weight ratio and the matching thickness of the absorber. This CoFe2@SWCNT/BaFe12O19 nanocomposite is anticipated to be applied in advanced microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, et al., Nanoscale 5, 2411–2420 (2013)

    Article  Google Scholar 

  2. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, J. Mater. Chem. 22, 18291–18299 (2012)

    Article  Google Scholar 

  3. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, J. Mater. Sci. 26, 5393–5399 (2015)

    Google Scholar 

  4. Y. Chen, Y. Wang, X. Li, et al., Carbon 82, 67–76 (2015)

    Article  Google Scholar 

  5. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401–405 (2004)

    Article  Google Scholar 

  6. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, et al., ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)

    Article  Google Scholar 

  7. B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X. Han, P. Xu, J. Appl. Polym. Sci. 130, 1909–1916 (2013)

    Article  Google Scholar 

  8. P. Smitha, I. Singh, M. Najim, R. Panwar, D. Singh, V. Agarwala, G.D. Varma, J. Mater. Sci. 27, 7731–7737 (2016)

    Google Scholar 

  9. A. Ghasemi, J. Magn. Magn. Mater. 324, 1080–1083 (2012)

    Article  Google Scholar 

  10. H.F. Lou, J.J. Wang, B.C. Xu, Z.G. Li, J. Mater. Sci. 26, 3898–3908 (2015)

    Google Scholar 

  11. Y. Li, R. Yi, A. Yan, L. Deng, K. Zhou, X. Liu, Solid State Sci. 11, 1319–1324 (2009)

    Article  Google Scholar 

  12. R. Moučka, M. Mravčáková, J. Vilčáková, M. Omastová, P. Sáha, Mater. Des. 32, 2006–2011 (2011)

    Article  Google Scholar 

  13. Y. Liu, W. Jiang, L. Xu, X. Yang, F. Li, Mater. Lett. 63, 2526–2528 (2009)

    Article  Google Scholar 

  14. J.-M. Thomassin, I. Huynen, R. Jerome, C. Detrembleur, Polymer 51, 115–121 (2010)

    Article  Google Scholar 

  15. Z. Wang, L. Wu, J. Zhou, W. Cai, B. Shen, Z. Jiang, J. Phys. Chem. C 117, 5446–5452 (2013)

    Article  Google Scholar 

  16. A. Mdarhri, F. Carmona, C. Brosseau, P. Delhaes, J. Appl. Phys. 103, 054303 (2008)

    Article  Google Scholar 

  17. G.R. Gordani, A. Ghasemi, A. Saidi, J. Magn. Magn. Mater. 391, 184–190 (2015)

    Article  Google Scholar 

  18. S. Sutradhar, S. Dasb, A. Roychowdhury, D. Das, P.K. Chakrabarti, Mater. Sci. Eng. B 196, 44–52 (2015)

    Article  Google Scholar 

  19. S. Tyagi, P. Verma, H.B. Baskey, R.C. Agarwala, et al., Ceram. Int. 38, 4561–4571 (2012)

    Article  Google Scholar 

  20. K. Zehani, R. Bez, A. Boutahar, E.K. Hlil, H. Lassri, J. Moscovici, N. Mliki, L. Bessais, J. Alloys Compd. 591, 58–64 (2014)

    Article  Google Scholar 

  21. L. Yu, S. Cao, Y. Liu, J. Wang, C. Jing, J. Zhang, J. Magn. Magn. Mater. 301, 100–106 (2006)

    Article  Google Scholar 

  22. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, IEEE Trans. Magn. 27, 5462–5464 (1991)

    Article  Google Scholar 

  23. J.R. Liu, M. Itoh, K.-i. Machida, Appl. Phys. Lett. 83, 4017–4019 (2003)

    Article  Google Scholar 

  24. H.J. Kwon, J.Y. Shin, J.H. Oh, J. Appl. Phys. 75, 6109–6111 (1994)

    Article  Google Scholar 

  25. J. Tersoff, R.S. Ruoff, Phys. Rev. Lett. 73, 676–679 (1994)

    Article  Google Scholar 

  26. T. Hertel, R.E. Walkup, P. Avouris, Phys. Rev. B 58, 13870–13873 (1998)

    Article  Google Scholar 

  27. H. Dai, Acc. Chem. Res. 35, 1035–1044 (2002)

    Article  Google Scholar 

  28. M. Milnera, J. Kurti, M. Hulman, H. Kuzmany, Phys. Rev. Lett. 84, 1324–1327 (2000)

    Article  Google Scholar 

  29. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47–99 (2005)

    Article  Google Scholar 

  30. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2043–2061 (2002)

    Article  Google Scholar 

  31. X. Sun, Y.Q. Ma, Y.F. Xu, S.T. Xu, B.Q. Geng, Z.X. Dai, G.H. Zheng, J. Alloys Compd. 645, 51–56 (2015)

    Article  Google Scholar 

  32. L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, Phys. Chem. Chem. Phys. 17, 2228–2234 (2015)

    Article  Google Scholar 

  33. L. Wang, H. Wu, Z. Shen, S. Guo, Y. Wang, Mater. Sci. Eng. B 177, 1649–1654 (2012)

    Article  Google Scholar 

  34. X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, C.J. Choi, J. Phys. D 40, 5383–5387 (2007)

    Article  Google Scholar 

  35. H. Luo, G. Xiong, X. Chen, Q. Li, C. Ma, D. Li, X. Wu, Y. Wan, J. Alloys Compd. 593, 7–15 (2014)

    Article  Google Scholar 

  36. M.C. Duan, L.M. Yu, L.M. Sheng, K. An, W. Ren, X.L. Zhao, J. Appl. Phys. 115, 174101 (2014)

    Article  Google Scholar 

  37. F. Wen, F. Zhang, Z. Liu, J. Phys. Chem. C 115, 14025–14030 (2011)

    Article  Google Scholar 

  38. M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W.A. Hines, J.I. Budnick, G.W. Taylor, Appl. Phys. Lett. 80, 4404–4406 (2002)

    Article  Google Scholar 

  39. A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  40. N. Gill, S. Puthucheri, D. Singh, et al., J. Mater. Sci. 28, 1259–1270 (2017)

    Google Scholar 

  41. X.T. Tang, G.T. Wei, T.X. Zhu, L.M. Sheng, K. An, L.M. Yu, Y. Liu, X.L. Zhao, J. Appl. Phys. 119, 204301 (2016)

    Article  Google Scholar 

  42. D.F. Zhang, Z.F. Hao, Y.N. Qian, et al., Sci. Rep. 7, 479 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11544011, 51202137, 61240054, and 11274222), and is partly sponsored by the Science and Technology Commission of Shanghai Municipality (15ZR1416500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang An or Xinluo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., An, K., Fang, Y. et al. The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites. J Mater Sci: Mater Electron 28, 12475–12483 (2017). https://doi.org/10.1007/s10854-017-7069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7069-1

Keywords

Navigation