Skip to main content
Log in

Quality enhancement of AZO thin films at various thicknesses by introducing ITO buffer layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62 × 1019 to 8.21 × 1019 cm−3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6 × 10−4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19 × 104 (Ω cm)−1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. H. Shi, S. M. Huang, J. B. Chu, H. B. Zhu, Z. A. Wang, X. D. Li, D. W. Zhang, Z. Sun, W. J. Cheng, F. Q. Huang, and X. J. Yin, J. Mater. Sci. Mater. Electron. 21, 1005 (2010)

    Article  Google Scholar 

  2. M.-S. Kim, K.-G. Yim, J.-S. Son, J.-Y. Leem, Bull. Korean Chem. Soc 33, 1235 (2012)

    Article  Google Scholar 

  3. K. Zhang, Y. Wu, W. Wang, B. Li, Y. Zhang, and T. Zuo, Resour. Conserv. Recycl. 104, 276 (2015)

    Article  Google Scholar 

  4. S.-M. Park, T. Ikegami, K. Ebihara, P.-K. Shin, Appl. Surf. Sci. 253, 1522 (2006)

    Article  Google Scholar 

  5. Z. Zhang, C. Bao, S. Ma, L. Zhang, S. Hou, J. Aust. Ceram. Soc. 48, 214 (2012)

    Google Scholar 

  6. S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008)

    Article  Google Scholar 

  7. S. Benramache, B. Benhaoua, H. Bentrah, J. Nanostructure Chem 3, 54 (2013)

    Article  Google Scholar 

  8. A. P. Rambu, V. Nica, and M. Dobromir, Superlattices Microstruct. 59, 87 (2013)

    Article  Google Scholar 

  9. J.C. Hsiao, C.H. Chen, H.J. Yang, C.L. Wu, C.M. Fan, C.F. Huang, C.C. Lin, P. Yu, J.C. Hwang, J. Taiwan Inst. Chem. Eng. 44, 758 (2013)

    Article  Google Scholar 

  10. M. Alauddin, J. K. Song, and S. M. Park, Appl. Phys. A 101, 707 (2010)

    Article  Google Scholar 

  11. M. U. Shahid, K. M. Deen, A. Ahmad, M. A. Akram, M. Aslam, and W. Akhtar, Appl. Nanosci. 6, 235 (2016)

    Article  Google Scholar 

  12. R. N. Chauhan, R. S. Anand, and J. Kumar, Phys. Status Solidi Appl. Mater. Sci. 211, 2514 (2014)

    Article  Google Scholar 

  13. K.H. Ri, Y. Wang, W.L. Zhou, J.X. Gao, X.J. Wang, J. Yu, Appl. Surf. Sci 258, 1283 (2011)

    Article  Google Scholar 

  14. K. K. Nagaraja, A. S. Kumar, and H. S. Nagaraja, in IOP Conf. Ser. Mater. Sci. Eng. p. 12071 (2015)

  15. J. Nishino, S. Ohshio, K. Kamata, J. Am. Ceram. Soc. 75, 3469 (1992)

    Article  Google Scholar 

  16. D. Raviendra, J.K. Sharma, J. Appl. Phys. 58, 838 (1985)

    Article  Google Scholar 

  17. I. Publishing, A. Douayar, H. Bihri, A. Mzerd, M. Abd-lefdil, U. M. V-agdal, and F. Sciences, Sensors {&} Transducers 27, 156 (2014)

  18. H. Park, K. Chung, J. Park, S. Ji, K. Song, H. Lim, and M. Jang, Ceram. Int. 41, 1641 (2015)

    Article  Google Scholar 

  19. S. Mondal, S.R. Bhattacharyya, P. Mitra, Pramana 80, 315 (2013)

    Article  Google Scholar 

  20. B. L. Zhu, J. Wang, S. J. Zhu, J. Wu, D. W. Zeng, and C. S. Xie, Phys. Status Solidi Appl. Mater. Sci. 209, 1251 (2012)

    Article  Google Scholar 

  21. S. Fernández and F. B. Naranjo, Sol. Energy Mater. Sol. Cells 94, 157 (2010)

    Article  Google Scholar 

  22. E. Pereira, M. Chaves, G. Junior, L. B. De Arruda, P. N. Lisboa-filho, S. F. Durrant, J. Roberto, and R. Bortoleto, Mater. Sci. Appl. 2013, 761 (2013)

    Google Scholar 

  23. V. Shelake, M. P. Bhole, and D. S. Patil, Optoelectron. Adv. Mater. Commun. 2, 353 (2008)

    Google Scholar 

  24. C. Wang, Y. Mao, and X. Zeng, Appl. Phys. A 110, 41 (2013)

    Article  Google Scholar 

  25. C. Jiang, R. R. Lunt, P. M. Duxbury, and P. P. Zhang, RSC Adv. 4, 3604 (2014)

    Article  Google Scholar 

  26. B. Lucas, A. El Amrani, A. Moliton, and M. Dilhan, Superlattices Microstruct. 42, 357 (2007)

    Article  Google Scholar 

  27. P. Morvillo, R. Diana, A. Mucci, E. Bobeico, R. Ricciardi, and C. Minarini, Sol. Energy Mater. Sol. Cells 141, 210 (2015)

    Article  Google Scholar 

  28. K. Mahmood, R. Munir, H. W. Kang, and H. J. Sung, RSC Adv. 3, 25741 (2013)

    Article  Google Scholar 

  29. M.N. Rezaie, N. Manavizadeh, E.M.N. Abadi, E. Nadimi, F.A. Boroumand, Appl. Surf. Sci. 392, 549 (2017)

    Article  Google Scholar 

  30. J. J. Kim, J. H. Park, J. Yoo, Y. S. Cho, and J. S. Cho, Solid State Sci. 31, 75 (2014)

    Article  Google Scholar 

  31. D. W. Kang, S. H. Kuk, K. S. Ji, H. M. Lee, and M. K. Han, Sol. Energy Mater. Sol. Cells 95, 138 (2011)

    Article  Google Scholar 

  32. S.L. Ou, D.S. Wuu, S.P. Liu, Y.C. Fu, S.C. Huang, R.H. Horng, Opt. Express 19, 16244 (2011)

    Article  Google Scholar 

  33. R.N. Chauhan, C. Singh, R.S. Anand, J. Kumar, IEEE Trans. Electron Devices 61, 3775 (2014)

    Article  Google Scholar 

  34. Z. Ben Ayadi, L. El Mir, K. Djessas, and S. Alaya, Mater. Sci. Eng. C 28, 613 (2008)

    Article  Google Scholar 

  35. N. Manavizadeh, A.R. Khodayari, E. Asl Soleimani, and S. Bagherzadeh, Iran. J. Chem. Chem. Eng. 31, (2012)

  36. N. Manavizadeh, F.A. Boroumand, E. Asl-Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayari, M.A. Rasouli, Thin Solid Films 517, 2324 (2009)

    Article  Google Scholar 

  37. R. Ghosh, D. Basak, and S. Fujihara, J. Appl. Phys. 96, 2689 (2004)

    Article  Google Scholar 

  38. F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu, and L. J. Zhuge, Vacuum 89, 127 (2013)

    Article  Google Scholar 

  39. B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, X.Z. Zhao, J. Appl. Phys. 101, 33713 (2007)

    Article  Google Scholar 

  40. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, J. Appl. Phys. 94, 1597 (2003)

    Article  Google Scholar 

  41. J. K. Jha, R. Santos-Ortiz, J. Du, and N. D. Shepherd, J. Mater. Sci. Mater. Electron. 25, 1492 (2014)

    Article  Google Scholar 

  42. M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, D. N. Md Sin, and M. Rusop, Appl. Surf. Sci. 275, 75 (2013)

    Article  Google Scholar 

  43. C. Guillén and J. Herrero, Vacuum 84, 924 (2010)

    Article  Google Scholar 

  44. M. Negin, K. Alireza, A.S. Ebrahim, B. Sheida, M.H. Hadi, Iran. J. Cham. Chem. Eng 28, 57 (2009)

    Google Scholar 

  45. G. Fang, D. Li, B.-L. Yao, J. Phys. D. Appl. Phys 35, 3096 (2002)

    Article  Google Scholar 

  46. J.H. Lee, J. Electroceramics 23, 512 (2009)

    Article  Google Scholar 

  47. C. Besleaga, L. Ion, and S. Antohe, Rom. Rep. Phys. 66, 993 (2014)

    Google Scholar 

  48. R.E.I. Schropp, A. Madan, J. Appl. Phys. 66, 2027 (1989)

    Article  Google Scholar 

  49. J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, B.H. Zhao, J. Appl. Phys. 101, 83705 (2007)

    Article  Google Scholar 

  50. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsieh, Chem. Phys. Lett. 409, 208 (2005)

    Article  Google Scholar 

  51. A. Van Der Drift, R626, Philips Res. Repts 22, 267 (1967)

    Google Scholar 

  52. X.-Y. Gao, Q.-G. Lin, Y. Liang, J. Korean Phys. Soc. 57, 710 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negin Manavizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, M.N., Manavizadeh, N., Nadimi, E. et al. Quality enhancement of AZO thin films at various thicknesses by introducing ITO buffer layer. J Mater Sci: Mater Electron 28, 9328–9337 (2017). https://doi.org/10.1007/s10854-017-6671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6671-6

Keywords

Navigation