Skip to main content
Log in

Facile hydrothermal synthesis for size-controlled YVO4:Eu3+ micro/nanosheets and its luminescence properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Homogeneous and size-controlled YVO4:Eu3+ micro/nanosheets were successfully synthesized on a large scale by using an ammonium oxalate (AO)-assisted hydrothermal route and post-calcination process. In this study, the shape and size of the as-prepared architectures can be changed effectively by controlling a series of experimental parameters, such as the precursor’s reaction temperature, hydrothermal reaction time and molar ratio of organic additive AO:Y3+. YVO4:Eu3+ micro/nanosheets were synthesized with lengths ranging from 2000 to 400 nm and thicknesses ranging from 200 to 50 nm. When changing the precursor’s reaction temperature and reducing the hydrothermal reaction time to 2 h, the phase composition was transformed into Y2O3 instead of YVO4. Functioning as a precipitant and shape modifier, AO exerted a dynamic effect by adjusting the growth rate of different facets under the various experimental conditions, resulting in the formation of different shapes and sizes of the final products. The correlative growth mechanism was analyzed in detail. Photoluminescence and Electroluminescence properties of the products exhibited a strong red emission focused on 618 nm under 275 nm ultraviolet excitation or direct current high-voltage field. Small sample sizes exhibited high EL intensity. The size-controlled products synthesized successfully via the hydrothermal method could provide a great opportunity for systematically evaluating their luminescence properties and accelerating the use of different types of applications in color display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Zhang, B. Liu, S. Dong. J. Phys. Chem. B 111, 10448 (2007)

    Article  Google Scholar 

  2. M. Tan, Z. Ye, G. Wang, J. Yuan, Chem. Mater. 16, 2494 (2004)

    Article  Google Scholar 

  3. D. Giaume, M. Poggi, D. Casanova, G. Mialon, K. Lahlil, A. Alexandrou, T. Gacoin, Langmuir 24, 11018 (2008)

    Article  Google Scholar 

  4. L. Wang, H.S. Zhou, Anal. Chem. 86, 8902 (2014)

    Article  Google Scholar 

  5. H. Wang, O. Odawara, H. Wada, Sci. Rep. 6, 20507 (2016)

    Article  Google Scholar 

  6. K. Binnemans, Chem. Rev. 109, 4283 (2009)

    Article  Google Scholar 

  7. J.R. O’Connor, Appl. Phys. Lett. 9, 407 (1966)

    Article  Google Scholar 

  8. R.A. Fields, M. Birnbaum, C.L. Fincher, Appl. Phys. Lett. 51, 1885 (1988)

    Article  Google Scholar 

  9. A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J.P. Boilot, Chem. Mater. 14, 2264 (2002)

    Article  Google Scholar 

  10. C. Brecher, H. Samelson, A. Lempicki, R. Riley, T. Peters, Phys. Rev. 155, 178 (1967)

    Article  Google Scholar 

  11. A. Ji, X. Xie, W. Liu, Phys. Rev. Lett. 99, 183602 (2007)

    Article  Google Scholar 

  12. A. Ji, Q. Sun, X. Xie, W. Liu, Phys. Rev. Lett. 102, 023602 (2009)

    Article  Google Scholar 

  13. Z. Zhang, S. Tao, G. Chen, X. Zhao, J. Supercond. Nov. Magn. 29, 1159 (2016)

    Article  Google Scholar 

  14. F. He, P. Yang, N. Niu, W. Wang, S. Gai, D. Wang, J. Lin, J. Colloid Interface Sci. 343, 71 (2010)

    Article  Google Scholar 

  15. H. Wu, H. Xu, Q. Su, T. Chen, M. Wu, J. Mater. Chem 13, 1223 (2003)

    Article  Google Scholar 

  16. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater 14, 2224 (2002)

    Article  Google Scholar 

  17. S. Ekambaram, K.C. Patil, J. Alloys Compd. 217, 104 (1995)

    Article  Google Scholar 

  18. L. Sun, Y. Zhang, J. Zhang, C. Yan, C. Liao, Y. Lu, Solid State Commun. 124, 35 (2002)

    Article  Google Scholar 

  19. Y. Li, G. Hong, J. Solid State Chem. 28, 6 (2010)

    Google Scholar 

  20. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, J. Lin, Inorg. Chem. 49, 6706 (2010)

    Article  Google Scholar 

  21. G. Chen, W. Qi, Y. Li, C. Yang, X. Zhao, J. Mater. Sci. 27, 5628 (2016)

    Google Scholar 

  22. G. Chen, S. Tao, C. Yang, X. Zhao, J. Mater. Sci. 26, 1 (2015)

    Article  Google Scholar 

  23. G. Li, K. Chao, A. Hongrui Peng, K. Chen, J. Phys. Chem. C 112, 6228 (2008)

    Article  Google Scholar 

  24. A. Huignard, V. Buissette, A. Franville, T. Gacoin, J. Boilot, J. Phys. Chem. B 107, 6754 (2003)

    Article  Google Scholar 

  25. M. Naushad, A A. Ansari, Z.A. Alothman, J. Mittal, Desalin Water Treat. 57, 1 (2014)

    Google Scholar 

  26. G. Jia, L. Kai, Y. Zheng, Y. Song, H. You, Cryst. Growth Des. 9, 3702 (2009)

    Article  Google Scholar 

  27. H. Yu, Y. Song, Y. Li, Y. Wu, B. Chen, P. Li, C. Sheng, J. Mater. Sci. 27, 1 (2016)

    Article  Google Scholar 

  28. Z. Hou, P. Yang, C. Li, L. Wang, H. Lian, Z. Quan, J. Lin, Chem. Mater. 20, 6686 (2008)

    Article  Google Scholar 

  29. H. Zhu, D. Zuo, J. Phys. Chem. C 113, 10402 (2009)

    Article  Google Scholar 

  30. M. Yu, J. Lin, J. Fang, Chem. Mater. 17, 1783 (2005)

    Article  Google Scholar 

  31. M. Lim, J. Jiang, P. Tao, P. Camargo, Y. Zhu, Y. Xia, Adv. Funct. Mater 19, 189 (2009)

    Article  Google Scholar 

  32. C. Chao, P. Ye, Y. Zhou, P. Zhao Chin. J. Inorg. Chem. 26, 1561 (2010)

    Google Scholar 

  33. Y. Zhang, J. Hu, B. Bernevig, X. Wang, X. Xie, W. Liu, Phys. Rev. Lett. 102, 106401 (2009)

    Article  Google Scholar 

  34. Z. Li, Y. Zhang, Angew. Chem. Int. Ed. 45, 7732 (2006)

    Article  Google Scholar 

  35. S. Zhang, Y. Liang, X. Gao, Acta Phys. Pol. 129, 79 (2016)

    Article  Google Scholar 

  36. Z. Chen, W. Bu, N. Zhang, J. Shi, J. Phys. Chem. C 112, 4378 (2008)

    Article  Google Scholar 

  37. C. Li, Z. Quan, J. Yang, J. Lin, Inorg. Chem. 46, 6329 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51272215, 11674267) and the National Key Scientific Program of China (under project No. 2012CB921503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Chen, G., Yang, C. et al. Facile hydrothermal synthesis for size-controlled YVO4:Eu3+ micro/nanosheets and its luminescence properties. J Mater Sci: Mater Electron 28, 9237–9244 (2017). https://doi.org/10.1007/s10854-017-6658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6658-3

Keywords

Navigation