Skip to main content

Advertisement

Log in

Gaseous-phase, silica-coated sulfur particles as a cathode material for high-performance lithium/sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium/sulfur (Li/S) batteries are one of the rechargeable batteries with high theoretical special capacity and high theoretical energy density. The gaseous-phase, silica (GPSiO2)-coated sulfur composites with different weight ratios were synthesized through solid-state fusion method as a novel cathode material for Li/S batteries. X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and electrochemical testing methods were conducted to investigate the effect of gaseous-phase silica/sulfur composites on electrochemical performance. Results indicate that the composites have flocculent structure. The initial specific capacity of the GPSiO2/S-3:7 composite is up to 1610 mA h g−1 at 0.1 C, which is the highest in the different ratio composites and is approximately 96% of sulfur utilization. The specific capacity was maintained at 814 mA h g−1 after the 50th cycle. The GPSiO2/S-3:7 composite has the lowest impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zhang, H. Ye, Y. Yin et al., Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries. J. Energy Chem. 23, 308–314 (2014)

    Article  Google Scholar 

  2. L.A. Huff, J.L. Rapp, J.A. Baughman et al., Identification of lithium–sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy. Surf. Sci. 631, 295–300 (2015)

    Article  Google Scholar 

  3. Z. Geng, Q.F. Xiao, D.B. Wang et al., Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium–sulfur batteries by nitrogen doping. Electrochim. Acta 202, 131–139 (2016)

    Article  Google Scholar 

  4. A. Swiderska-Mocek, E. Rudnicka, Lithium–sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte. J. Power Sources 273, 162–167 (2015)

    Article  Google Scholar 

  5. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  Google Scholar 

  6. N. Jayaprakash, J. Shen, S.S. Moganty et al., Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 50, 5904–5908 (2011)

    Article  Google Scholar 

  7. G. Zhou, L. Li, C. Ma et al., A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 11, 356–365 (2015)

    Article  Google Scholar 

  8. N. Nakamura, T. Yokoshima, H. Nara et al., Suppression of polysulfide dissolution by polypyrrole modification of sulfur-based cathodes in lithium secondary batteries. J. Power Sources 274, 1263–1266 (2015)

    Article  Google Scholar 

  9. V.S. Kolosnitsyn, E.V. Kuzmina, E.V. Karaseva, On the reasons for low sulphur utilization in the lithium–sulphur batteries. J. Power Sources 274, 203–210 (2015)

    Article  Google Scholar 

  10. J.R. Xiao, H. Zhao, A.H. Jiang, et al., Preparation and lithium storage properties of active carbon-CNT/sulfur composite. Ionics 21, 1241–1246 (2015)

    Article  Google Scholar 

  11. X. Liu, Z. Shan, K. Zhu et al., Sulfur electrode modified by bifunctional nafion/-Al2O3 membrane for high performance lithium–sulfur batteries. J. Power Sources 274, 85–93 (2015)

    Article  Google Scholar 

  12. H. Wang, C. Zhang, Z. Chen et al., Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81, 782–787 (2015)

    Article  Google Scholar 

  13. Y. Cao, X.L. Li, M.S. Zheng et al., Ultra-high Rates and reversible capacity of Li–S Battery with a nitrogen-doping conductive Lewis Base Matrix. Electrochim. Acta 192, 467–474 (2016)

    Article  Google Scholar 

  14. Z.X. Hao, L.X. Yuan, Z. Li et al., High performance lithium-sulfur batteries with a facile and effective dual functional separator. Electrochim. Acta 200, 197–203 (2016)

    Article  Google Scholar 

  15. J.R. Xiao, H.Z. Wang, X.Y. Li et al., N-doped carbon nanotubes as cathode material in Li–S batteries. J Mater Sci 26, 7895–7900 (2015)

    Google Scholar 

  16. B.X. Wang, Z.Q. Wang, Y.J. Cui et al., Cr2O3@TiO2 yolk/shell octahedrons derived from a metal–organic framework for high-performance lithium–ion batteries. Microporous Mesoporous Mater. 203, 86–90 (2015)

    Article  Google Scholar 

  17. G.M. Zhou, Y.B. Zhao, C.X. Zu et al., Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12, 240–249 (2015)

    Article  Google Scholar 

  18. X. Wang, G. Li, J. Li, et al., Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ. Sci. 9, 2533–2538 (2016)

    Google Scholar 

  19. J. Lee, T. Hwang, Y. Lee et al., Coating of sulfur particles with manganese oxide nanowires as a cathode material in lithium–sulfur batteries. Mater. Lett. 158, 132–135 (2015)

    Article  Google Scholar 

  20. Y. Zhou, C.G. Zhou, Q.Y. Li et al., Enabling prominent high-rate and cycle performances in one lithium-sulfur battery: designing permselective gateways for Li + transportation in holey-CNT/S cathodes. Adv. Mater. 27, 3774–3781 (2015)

    Article  Google Scholar 

  21. B. CampBell, J. Bell, H.H. Bay et al., SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium–sulfur batteries. Nanoscale 7, 7051–7055 (2015)

    Article  Google Scholar 

  22. P. Wei, M.Q. Fan, H.C. Chen et al., Ternary graphene/sulfur/SiO2 composite as stable cathode for high performance lithium/sulfur battery. Int. J. Hydrogen Energy 41, 1819–1827 (2016)

    Article  Google Scholar 

  23. W.L. Wu, C.Y. Wan, C.X. Wu, L.H. Guan, Embedding SiO2 into graphene oxide in situ to generate 3D hierarchical porous graphene laminates for high performance lithium–sulfur batteries. RSC Adv. 5, 80353–80356 (2015)

    Article  Google Scholar 

  24. J. Balach, T. Jaumann, M. Klose et al., Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent. J. Power Sources 303, 317–324 (2016)

    Article  Google Scholar 

  25. J.R. Xiao, H.Z. Wang, Y.X. Hou, et al. Reduction of graphene oxide gel with carbon nanotubes, sulfur cathode material preparation and electrochemical performance. Rsc Adv. 6, 38943–38949 (2016)

    Article  Google Scholar 

  26. Z.Q. Li, C.X. Li, X.L. Ge et al., Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23, 15–26 (2016)

    Article  Google Scholar 

  27. H.J. Peng, D.W. Wang, J.Q. Huang et al., Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3 (2016). doi:10.1002/advs.201500268

  28. X. Fang, W. Weng, J. Ren, et al., A cable-shaped lithium sulfur battery. Adv. Mater. 28 491–496 (2016)

    Article  Google Scholar 

  29. Y. Liu, X.H. Zhao, G.S. Chauhan et al., Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries[J]. Appl. Surf. Sci. 380, 151–158 (2016)

    Article  Google Scholar 

  30. J.Q. Huang, Z.L. Xu, S. Abouali et al., Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99, 624–632 (2016)

    Article  Google Scholar 

  31. J.J. Kim, H.S. Kim, J. Ahn et al., Activation of micropore-confined sulfur within hierarchical porous carbon for lithium-sulfur batteries. J. Power Sources 306, 617–622 (2016)

    Article  Google Scholar 

  32. H.D. Shin, M. Agostini, I. Belharouak et al., High-power lithium polysulfide-carbon battery. Carbon 96, 125–130 (2016)

    Article  Google Scholar 

  33. C. Xu, Y. Wu, X. Zhao et al., Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries. J. Power Sources 275, 22–25 (2015)

    Article  Google Scholar 

  34. X.Y. Qian, L. Jin, D. Zhao et al., Ketjen black-MnO composite coated separator for high performance rechargeable lithium–sulfur battery. Electrochim. Acta 192, 346–356 (2016)

    Article  Google Scholar 

  35. Y.L. An, P. Wei, M.Q. Fan et al., Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium-sulfur batteries. Appl. Surf. Sci. 375, 215–222 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. 11364011) and the Guangxi Natural Science Foundation (Grant No. 2015GXNSFAA139004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianrong Xiao or Yanwei Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Xiao, J., Guo, Y. et al. Gaseous-phase, silica-coated sulfur particles as a cathode material for high-performance lithium/sulfur batteries. J Mater Sci: Mater Electron 28, 8901–8907 (2017). https://doi.org/10.1007/s10854-017-6620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6620-4

Keywords

Navigation