Skip to main content
Log in

Influence of Ag concentration on the structure, optical and electrical properties of SnS2:Ag thin films prepared by spray pyrolysis deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag-doped tin-sulfide thin films were deposited with in spray pyrolysis method at T = 425 °C on soda lime glass substrates. The effects of Ag doping were investigated on the structural, optical, and electrical properties of thin films. Double deionized water was used as a precursor solution in which tin chloride (SnCl45H2O) and thiourea (CS(NH3)2) in addition to silver acetate (AgC2H3O2) were dissolved. All in all resulted to preparation of SnS2:Ag thin films with \(\frac{{\left[ {\text{Ag}} \right]}}{{\left[ {\text{Sn}} \right]}}\% = 0, \,1, \,2, \,3\, {\text{and}} \,4\,{\text{at}}.\%\). The (001) plane is the preferred orientation of the SnS2 phase which is analyzed by X-ray diffraction (XRD). The intensity of mentioned peak has an increasing trend, generally, with increasing Ag doping concentration. Thin films have spherical grains as is shown in SEM images. Increasing doping concentration from 1 to 4%, causes decrease in: single-crystal grains from 14.68 to 6.31 nm, optical band gap from 2.75 to 2.62 eV, carrier concentration from 3.11 × 1017 to 2.58 × 1017 cm−3, and Hall mobility from 1.81 to 0.13 cm2/v s, as well as increase in: average grain size, generally, from 70 to 79 nm and electrical resistance from 11.11 to 181.26 Ω cm, respectively. The majority carriers are electrons for these films as is concluded from Hall Effect measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Santhosh Kumar, A. Gowri Manohari, S. Dhanapandian, T. Mahalingam, Mater. Lett. 131, 167 (2014)

    Article  Google Scholar 

  2. K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, T. Mahalingam, Optik 125, 3996 (2014)

    Article  Google Scholar 

  3. A. Jakhar, A. Jamdagni, A. Bakshi, T. Verma, V. Shukla, P. Jain, N. Sinha, P. Arun, Solid State Commun. 168, 31 (2013)

    Article  Google Scholar 

  4. R. Mariappan, T. Mahalingam, V. Ponnuswamy, Optik 122, 2216 (2011)

    Article  Google Scholar 

  5. P. Kevin, D.J. Lewis, J. Raftery, M. Azad Malik, P. O’Brien, J. Cryst. Growth 415, 93 (2015)

    Article  Google Scholar 

  6. S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Shevtsova, P.P. Gladyshev, Thin Solid Films 585, 40 (2015)

    Article  Google Scholar 

  7. B. Ghosh, R. Bhattacharjee, P. Banerjee, S. Das, Appl. Surf. Sci. 257, 3670 (2011)

    Article  Google Scholar 

  8. V. Robles, J.F. Trigo, C. Guillen, J. Herrero, Mater. Chem. Phys. 167, 165 (2015)

    Article  Google Scholar 

  9. N. Koteeswara Reddy, M. Devika, Y.-B. Hahn, K.R. Gunasekhar, Appl. Surf. Sci. 268, 317 (2013)

    Article  Google Scholar 

  10. N.K. Reddy, K.T.R. Reddy, Mater. Chem. Phys. 102, 13 (2007)

    Article  Google Scholar 

  11. K.S. Kumar, C. Manoharan, S. Dhanapandian, A.G. Manohari, Mol. Biomol. Spectrosc. 115, 840 (2013)

    Article  Google Scholar 

  12. N.F. Habubi, R.S. Khaleel, S.S. Chiad, Baghdad Sci. J. 8, 2 (2011)

    Google Scholar 

  13. A. Gowri Manohari, S. Dhanapandian, C. Manoharan, K. Santhosh Kumar, T. Mahalingam, Mater. Sci. Semicond. Process. 17, 138 (2014)

    Article  Google Scholar 

  14. M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, M.E. Calixto, Thin Solid Films 517, 2497 (2009)

    Article  Google Scholar 

  15. B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Adv. Mater. 26, 3854 (2014)

    Article  Google Scholar 

  16. X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, Chem.—An. Asian J. 9, 1611 (2014)

    Article  Google Scholar 

  17. L. David, R. Bhandavat, G. Singh, ACS Nano 8, 1759 (2014)

    Article  Google Scholar 

  18. M. Sathish, S. Mitani, T. Tomai, I. Honma, J. Phys. Chem. C 116, 12475 (2012)

    Article  Google Scholar 

  19. D. Kong, H. He, Q. Song, B. Wang, Q.-H. Yang, L. Zhi, RSC Adv. 4, 23372 (2014)

    Article  Google Scholar 

  20. D. Su, S. Dou, G. Wang, Chem. Commun. 50, 4192 (2014)

    Article  Google Scholar 

  21. M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, J. Electrochem. Soc. 153, G727 (2006)

    Article  Google Scholar 

  22. M. Patel, I. Mukhopadhyay, A. Ray, Opt. Mater. 35, 1693 (2013)

    Article  Google Scholar 

  23. A.E. Abdelrahman, W.M.M. Yunus, A.K. Arof, J. Non-Cryst. Solids 358, 1447 (2012)

    Article  Google Scholar 

  24. M.G. Sousa, A.F. da Cunha, P.A. Fernandes, J. Alloy. Compd. 592, 80 (2014)

    Article  Google Scholar 

  25. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, T. Buonassisi, Thin Solid Films 519, 742 (2011)

    Article  Google Scholar 

  26. M.R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M.M. Bagheri-Mohagheghi, Phys. Scr. 84, 035705 (2011)

    Article  Google Scholar 

  27. M.R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M.M. Bagheri-Mohagheghi, J. Semicond. 32, 113002 (2011)

    Article  Google Scholar 

  28. T.H. Sajeesh, K.B. Jinesh, C.S. Kartha, K.P. Vijayakumar, Appl. Surf. Sci. 258, 6870 (2012)

    Article  Google Scholar 

  29. L. Amalraj, C. Sanjeeviraja, M. Jayachandran, J. Cryst. Growth 234, 683 (2002)

    Article  Google Scholar 

  30. A. Akkari, M. Reghima, C. Guasch, N.K. Turki, J. Mater. Sci. 47, 1365 (2012)

    Article  Google Scholar 

  31. M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, J. Electrochem. Soc. 153, 727 (2006)

    Article  Google Scholar 

  32. Y. Guo, W. Shi, Y. Zhang, L. Wang, G. Wei, Sixth International Conference on Thin Film Physics and Applications. International Society for Optics and Photonics, Q69841 (2008)

  33. G. Gordillo, M. Boteroa, J.S. Oyola, Microelectron. J. 39, 1351 (2008)

    Article  Google Scholar 

  34. M.R. Fadavieslam, J. Mater. Sci. Mater. Electron (2016). doi:10.1007/s10854-016-5809-2. (in press)

    Google Scholar 

  35. T.H. Sajeesh, A.R. Warrier, K.C. Sudha, K.P. Vijayakumar, Thin Solid Films 518, 4370 (2010)

    Article  Google Scholar 

  36. G. Turgut, E. Sonmez, Superlattices Microstruct. 69, 175 (2014)

    Article  Google Scholar 

  37. M. Bicer, I. Sisman, Appl. Surf. Sci. 257, 2944 (2011)

    Article  Google Scholar 

  38. H.J. Jia, S.Y. Cheng, X.K. Wu, Y.L. Yang, Nat. Sci. 2, 197 (2010)

    Google Scholar 

  39. Y. Yongli, Ch. Shuying, L. Songlin, Adv. Mater. Res. 60, 105 (2009)

    Google Scholar 

  40. A. Sa´nchez-Jua´rez, A. Tiburcio-Silver, A. Ortiz, Thin Solid Films 480–481, 452–456 (2005)

    Article  Google Scholar 

  41. A.T. Kana, T.G. Hibbert, M.F. Mahon, K.C. Molloy, I.P. Parkin, L.S. Price, Polyhedron 20, 2989–2995 (2001)

    Article  Google Scholar 

  42. B. Thangaraju, P. Kaliannan, J. Phys. D Appl. Phys. 33, 1054–1059 (2000)

    Article  Google Scholar 

  43. N.G. Deshpande, A.A. Sagade, Y.G. Gudage, C.D. Lokhande, R. Sharma, J. Alloy. Compd. 436, 421–426 (2007)

    Article  Google Scholar 

  44. Chengwu Shi, Zhu Chen, Gaoyang Shi, Renjie Sun, Xiaoping Zhan, Xinjie Shen, Thin Solid Films 520, 4898–4901 (2012)

    Article  Google Scholar 

  45. R.K. Gupta, F. Yakuphanoglu, Sol. Energy 86, 1539–1545 (2012)

    Article  Google Scholar 

  46. P. Zhao, P.B. Vyas, S. McDonnell, Microelectron. Eng. 147, 151–154 (2015)

    Article  Google Scholar 

  47. G. Said, P.A. Lee, Phys. Status Solidi (a) 16, 99 (1973)

    Article  Google Scholar 

  48. L.E. Conroy, K.C. Park, Inorg. Chem. 7, 459 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Fadavieslam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadavieslam, M.R., Kazemi, A. Influence of Ag concentration on the structure, optical and electrical properties of SnS2:Ag thin films prepared by spray pyrolysis deposition. J Mater Sci: Mater Electron 28, 3970–3977 (2017). https://doi.org/10.1007/s10854-016-6009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6009-9

Keywords

Navigation