Skip to main content
Log in

Large-scale controlled synthesis of magnetic FeCo alloy with different morphologies and their high performance of electromagnetic wave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic materials of FeCo alloy with different morphologies (nanocube, nanoplate and flower-like structure) have been synthesized by controlling the molar ratio of Fe2+ to Co2+, concentrations of cyclohexane and PEG-400. The structure and morphology were characterized by several analytical techniques, including XRD, SEM, TEM, XPS and VSM. The microwave-absorbing properties were measured by a vector network analyzer. The SEM and TEM photographs reveal that the edge length of FeCo nanocube is about 215 nm, the diameter and thickness of the nanoplate is 100 and 15 nm, respectively. The average diameter of flower-like FeCo is about 1.5 μm. The investigation of the electromagnetic wave absorbability revealed that flower-like FeCo exhibited excellent electromagnetic wave absorption properties compared with FeCo nanocube and FeCo nanoplate due to the special structure. The maximum reflection loss of flower-like FeCo was up to −43 dB at 13.1 GHz and the absorption bandwidth with the reflection loss below −10 dB was 5.8 GHz (from 2.7 to 5.4 GHz and from 12 to 15.1 GHz) with a thickness of 3.4 mm. Furthermore, this work offers a simple solvothermal route to fabricate shape and size-controlled FeCo alloy, which can be used as an attractive candidate for new type of electromagnetic wave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    Article  Google Scholar 

  2. H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. Acs Appl. Mater. Interfaces 7, 9776–9783 (2015)

    Article  Google Scholar 

  3. R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105-1–033105-3 (2006)

    Google Scholar 

  4. Y.H. Chen, 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 3, 12621–12625 (2015)

    Article  Google Scholar 

  5. X. Sun, J. He, G. Li, J. Tang, T. Wang, Laminated magnetic graphene with enhanced electromagnetic wave absorption propertie. J. Mater. Chem. C 1, 765–777 (2012)

    Article  Google Scholar 

  6. H.L. Xu, H. Bi, R.B. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111, 07A522 (2012)

    Article  Google Scholar 

  7. E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 125, 9090 (2003)

    Article  Google Scholar 

  8. N. Wang, X. Cao, D. Kong, W. Chen, L. Guo, C. Chen, Nickel chains assembled by hollow microspheres and their magnetic properties. J. Phys. Chem. C 112, 6613 (2008)

    Article  Google Scholar 

  9. N. Li, C. Hu, M. Cao, Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Phys. Chem. Chem. Phys. 15, 7685–7689 (2013)

    Article  Google Scholar 

  10. Y. Yang, M. Li, Y. Wu, B. Zong, J. Ding, Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 6, 25444–25448 (2016)

    Article  Google Scholar 

  11. Z.T. Li, M.Q. Ye, A.J. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4, and its composites with conductive polymer. J. Mater. Sci.: Mater. Electron. 27, 1031–1043 (2015)

    Google Scholar 

  12. L. Xi, Z. Wang, Y. Zuo, X. Shi, The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction. Nanotechnology 22, 359–362 (2011)

    Google Scholar 

  13. T. Burkert, L. Nordstrom, O. Eriksson, O. Heinonen, Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett. 93, 027203 (2004)

    Article  Google Scholar 

  14. Y. Yang, C. Xu, Y. Xia, Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloys Compd. 493, 549–552 (2010)

    Article  Google Scholar 

  15. Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5, 12296–12303 (2013)

    Article  Google Scholar 

  16. B. Zhao, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015)

    Article  Google Scholar 

  17. G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587–1593 (2011)

    Article  Google Scholar 

  18. X.H. Li, X.H. Guo, T.C. Liu, X.L. Zheng, J.T. Bai, Shape-controlled synthesis of Fe nanostructures and their enhanced microwave absorption properties at L-band. Mater. Res. Bull. 59, 137–141 (2014)

    Article  Google Scholar 

  19. X.W. Wei, G.X. Zhu, Y.J. Liu, Y.H. Ni, Y. Song, Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem. Mater. 20, 6248–6253 (2008)

    Article  Google Scholar 

  20. X.B. Su, H.G. Zheng, Z.P. Yang, Y.C. Zhu, A.L. Pan, Preparation of nanosized particles of FeNi and FeCo alloy in solution. J. Mater. Sci. 38, 4581–4585 (2003)

    Article  Google Scholar 

  21. J.C. Bao, Y.Y. Liang, Z. Xu, L. Si, Facile synthesis of hollow nickel submicrometer sphere. Adv. Mater. 15, 1832 (2003)

    Article  Google Scholar 

  22. M.F. Casula, G. Concas, F. Congiu, A. Corrias, A. Falqui, G. Spano, Near equiatomic FeCo nanocrystalline alloy embedded in an alumina aerogel matrix: microstructural features and related magnetic properties. J. Phys. Chem. 109, 23888–23895 (2005)

    Article  Google Scholar 

  23. G.S. Chaubey, C. Barcena, N.Y. Poudyal, C.B. Rong, J.M. Gao, S.H. Sun, J.P. Liu, J. Am, Synthesis and stabilization of FeCo nanoparticles. Chem. Soc. 129, 7214–7215 (2007)

    Article  Google Scholar 

  24. M. Zong, Y. Huang, Y. Zhao, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3, 23638–23648 (2013)

    Article  Google Scholar 

  25. P.B. Liu, Y. Huang, X. Zhang, Synthesis, characterization and excellent electromagneticwave absorption properties of graphene/poly (3,4-ethylenedioxythiophene) hybrid materials with Fe3O4 nanoparticles. J. Alloys Compd. 617, 511–517 (2014)

    Article  Google Scholar 

  26. G. Li, G.G. Hu, H.D. Zhou, X.J. Fan, X.G. Li, Absorption of microwaves in La1−xSrx MnO3 manganese powders over a wide bandwidth. J. Appl. Phys. 90, 5512–5514 (2001)

    Article  Google Scholar 

  27. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, Complex permeability and permittivity and microwave absorption of ferrite–rubber composite at X-band frequencies. IEEE Trans. Magn. 27, 5462–5464 (1991)

    Article  Google Scholar 

  28. M.X. Sui, X.L. Lv, A.M. Xie, W.D. Xu, X.H. Rong, G.J. Wu, The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synth. Met. 210, 156–164 (2015)

    Article  Google Scholar 

  29. Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang, synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys. 106, 054303 (2009)

    Article  Google Scholar 

  30. G. Bertotti, Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations. J. Appl. Phys. 57, 2110–2117 (1985)

    Article  Google Scholar 

  31. A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69, 7762–7764 (1991)

    Article  Google Scholar 

  32. M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.T. Budnick, G.W. Taylor, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404 (2002)

    Article  Google Scholar 

  33. X. Cai, J. Wang, B. Li, Microwave absorption properties of LiZn ferrites hollow microspheres doped with La and Mg by self-reactive quenching technology. J. Alloys Compd. 657, 608–615 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Spaceflight Foundation of China (No. 2014-HT-XGD), the Spaceflight Innovation Foundation of China (No. 2014KC11023) and the Fundamental Research Funds for the Central Universities (No. 3102016QD021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Huang, Y., Liu, P. et al. Large-scale controlled synthesis of magnetic FeCo alloy with different morphologies and their high performance of electromagnetic wave absorption. J Mater Sci: Mater Electron 28, 3159–3167 (2017). https://doi.org/10.1007/s10854-016-5904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5904-4

Keywords

Navigation