Skip to main content
Log in

New facile preparation of Ho2O3 nanostructured material with improved photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present work describes a facile approach to synthesize highly photocatalytically active holmium oxide (Ho2O3) nanostructured photocatalyst with the aid of [HoL(NO3)2]NO3 (L = bis-(2-hydroxynaphthaldehyde)-1,2-ethandiamin), as novel holmium source and sodium dodecyl sulfate as capping agent. To investigate the influence of the capping agent dosage on the particle size and morphology of holmium oxide, several experiments were carried out. The structural, optical, magnetic and morphological characteristics of as-synthesized Ho2O3 nanostructures were analyzed by energy dispersive X-ray microanalysis, field emission scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy, thermo-gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometer techniques. Moreover, the photocatalytic degradation of the erythrosine, eosin Y and methylene blue as water pollutants was carried out to evaluate the catalytic properties of as-obtained Ho2O3 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3
Fig. 13

Similar content being viewed by others

References

  1. S.V. Chavan, P.U.M. Sastry, A.K. Tyagi, Combustion synthesis of nano-crystalline Nd-doped ceria and Nd2O3 and their fractal behavior as studied by small angle X-ray scattering. J. Alloys Compd. 456, 51–56 (2008)

    Article  Google Scholar 

  2. N. Mir, M. Salavati-Niasari, Effect of tertiary amines on the synthesis and photovoltaic properties of TiO2 nanoparticles in dye sensitized solar cells. Electrochim. Acta 102, 274–281 (2013)

    Article  Google Scholar 

  3. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Novel poly(ethyleneglycol) assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram. Int. 41, 567–575 (2015)

    Article  Google Scholar 

  4. M. Zawadzki, Microwave-assisted synthesis and characterization of ultrafine neodymium oxide particles. J. Alloys Compd. 451, 297–300 (2008)

    Article  Google Scholar 

  5. N. Mir, M. Salavati-Niasari, Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater. Res. Bull. 48, 1660–1667 (2013)

    Article  Google Scholar 

  6. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route. J. Ind. Eng. Chem. 20, 3313–3319 (2014)

    Article  Google Scholar 

  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari, A sonochemical-assisted synthesis of pure nanocrystalline tetragonal zirconium dioxide using tetramethylethylenediamine. Int. J. Appl. Ceram. Tecnol. 11, 654–662 (2014)

    Article  Google Scholar 

  8. G.S. Brady, H.R. Clauser, J.A. Vaccari, Materials Handbook, 15th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  9. G.A.H. Mekhemer, Surface acid-base properties of holmium oxide catalyst: in situ infrared spectroscopy. Appl. Catal. A: Gen. 275, 1–7 (2004)

    Article  Google Scholar 

  10. E.L. Head, C.E. Holley Jr., in Rare Earth Research, ed. by L. Eyring (Gordon and Breach, New York, 1965)

    Google Scholar 

  11. M.N. Abdusalyamova, F.A. Makhmudov, E.N. Shairmardanov, I.D. Kovalev, P.V. Fursikov, I.I. Khodos, Y.M. Shulga, Structural features of nanocrystalline holmium oxide prepared by the thermal decomposition of organic precursors. J. Alloys Compd. 601, 31–37 (2014)

    Article  Google Scholar 

  12. V.B. Glushkova, A.G. Boganov, Polymorphism of rare-earth sesquioxides. Russ. Chem. Bull. 14, 1101–1107 (1965)

    Article  Google Scholar 

  13. S. Zinatloo-Ajabshir, M. Salavati-Niasari, New J. Chem. 39, 3948–3955 (2015)

    Article  Google Scholar 

  14. S.M. Kaczmarek, G. Leniec, Spectral and magnetic properties of macroacyclic and macrobicyclic Schiff base RE complexes. J. Non-Cryst. Solids 355, 1325–1332 (2009)

    Article  Google Scholar 

  15. K. Binnemans, Y.G. Galyametdinov, R. Van Deun, D.W. Bruce, S.R. Collinson, A.P. Polishchuk, Rare-earth-containing magnetic liquid crystals. J. Am. Chem. Soc. 122, 4335–4344 (2000)

    Article  Google Scholar 

  16. Y.L. Zhang, W.W. Qin, W.S. Liu, M.Y. Tan, N. Tang, Studies on synthesis and infrared and fluorescence spectra of new europium and terbium complexes with an amide-based open-chain crown ether. Spectrochim. Acta A 58, 2153–2157 (2002)

    Article  Google Scholar 

  17. L.M.S. El-Deen, M.S. Al Salhi, M.M. Elkholy, IR and UV spectral studies for rare earths-doped tellurite glasses. J. Alloy. Compd. 465, 333–339 (2008)

    Article  Google Scholar 

  18. R.L. Snyder, R. Jenkins, Chemical Analysis: Introduction to X-ray Powder Diffractometry (Wiley, New York, 1996)

    Google Scholar 

  19. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron 35, 149–153 (2012)

    Article  Google Scholar 

  20. R.S. Manea, S.J. Roha, O.S. Joob, C.D. Lokhandec, S.H. Han, Improved performance of dense TiO2/CdSe coupled thin films by low temperature process. Electrochim. Acta 50, 2453–2459 (2005)

    Article  Google Scholar 

  21. M. Shakouri-Arani, M. Salavati-Niasari, Synthesis and characterization of cadmium sulfide nanocrystals in the presence of a new sulfur source via a simple solvothermal method. New J. Chem. 38, 1179–1185 (2014)

    Article  Google Scholar 

  22. A.V. Prokofiev, A.I. Shelykh, B.T. Melekh, Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series. J. Alloy. Compd. 242, 41–44 (1996)

    Article  Google Scholar 

  23. J. Zhong, J. Li, F. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, Improved photocatalytic performance of SiO2-TiO2 prepared with the assistance of SDBS. J. Mol. Catal. A: Chem. 357, 101–105 (2012)

    Article  Google Scholar 

  24. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, Hydrothermal synthesis of Bi2S3 nanostructures and ABS-based polymeric nanocomposite. J. Nanostruct. 4, 227–232 (2014)

    Google Scholar 

  25. H.R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, S. Gholamrezaei, The effect of Mg(OH)2 nanoparticles on the thermal stability and flame retardancy of paraloid nanocomposites. J Nanostruct. 4, 99–104 (2014)

    Article  Google Scholar 

  26. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, Facile hydrothermal synthesis of tellurium nanostructures for solar cells. J. Nanostruct. 4, 459–465 (2014)

    Google Scholar 

  27. F. Beshkar, M. Salavati-Niasari, Facile synthesis of nickel chromite nanostructures by hydrothermal route for photocatalytic degradation of acid black 1 under visible light. J. Nanostruct. 4, 17–23 (2015)

    Google Scholar 

  28. L. Nejati-Moghadam, A. Esmaeili-Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, Synthesis and characterization of SnO2 nanostructures prepared by a facile precipitation method. J. Nanostruct. 4, 47–53 (2015)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No. 159271/1079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi-Derazkola, S., Zinatloo-Ajabshir, S. & Salavati-Niasari, M. New facile preparation of Ho2O3 nanostructured material with improved photocatalytic performance. J Mater Sci: Mater Electron 28, 1914–1924 (2017). https://doi.org/10.1007/s10854-016-5744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5744-2

Keywords

Navigation