Skip to main content
Log in

Performance improvement of highly mismatched GaSb layers on GaAs by interfacial-treatment-assisted chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Strain-relieved GaSb quantum dots on GaAs can be achieved by either periodic interfacial misfit (IMF) or the conventional Stranski–Krastanov (SK) growth modes by changing the growth parameters. In this study, the Sb interfacial treatment was employed to improve the GaSb crystal quality including low defect density, smooth surface morphology, and high hole mobility. This technique yields two-dimensional (2D) islands with a height as low as 1.7 nm and width up to 190 nm in the IMF growth mode. In contrast to the interfacial treatments conventionally employed in the initial strain relaxation of GaSb/GaAs hererostructure, the Sb treatment promotes the formation of strong Ga-Sb bonds on the surface of the grown island, which effectively reduces the interfacial free energy and thus promotes the formation of 2D islands. With the Sb interfacial treatment, a high-relaxation 100-nm GaSb epilayer was grown on the GaAs substrate, the epilayers was strain relaxed and exhibited enhanced electrical properties with a high hole mobility of ~667 cm2 V−1 s−1 and with superior optical properties as evidenced by the photoluminescence B-line peak. The results of this study demonstrate an effective interfacial-treatment growth technique to relax the initial strain for the highly mismatched GaSb layers grown on a GaAs substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Sze, K. K. Ng, Physics of semiconductor devices (John Wiley & Sons, 2006)

    Book  Google Scholar 

  2. M. Yokoyama, H. Yokoyama, M. Takenaka, S. Takagi, Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding. Appl. Phys. Lett. 106, 073503 (2015)

    Article  Google Scholar 

  3. M. Yokoyama, K. Nishi, S. Kim, H. Yokoyama, M. Takenaka, S. Takagi, Self-aligned Ni-GaSb source/drain junctions for GaSb p-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 104, 093509 (2015)

    Article  Google Scholar 

  4. A. Sharma, A.A. Goud, K. Roy, GaSb-InAs n-TFET With Doped Source Underlap Exhibiting Low Subthreshold Swing at Sub-10-nm Gate-Lengths. IEEE Electron Device Lett. 35, 1221–1223 (2014)

    Article  Google Scholar 

  5. W. Qian, M. Skowronski, R. Kaspi, Dislocation density reduction in GaSb films grown on GaAs substrates by molecular beam epitaxy. J. Electrochem. Soc. 144, 1430–1434 (1997)

    Article  Google Scholar 

  6. A.M. Rocher, Interfacial dislocations in the GaSb/GaAs (001) heterostructure. Solid State Phenom. 19, 563–572 (1991)

    Article  Google Scholar 

  7. S.H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L.R. Dawson, D.L. Huffaker, Strain relief by periodic misfit arrays for low defect density GaSb on GaAs. Appl. Phys. Lett. 88, 131911 (2006)

    Article  Google Scholar 

  8. A. Jallipalli, G. Balakrishnan, S.H. Huang, T.J. Rotter, K. Nunna, B.L. Liang, D.L. Huffaker, Structural analysis of highly relaxed GaSb grown on GaAs substrates with periodic interfacial array of 90 misfit dislocations. Nanoscale Res. Lett. 4, 1458–1462 (2009)

    Article  Google Scholar 

  9. Li X. ZhouW, S. Xia, J. Yang, W. Tang, K.M. Lau, High Hole Mobility of GaSb Relaxed Epilayer Grown on GaAs Substrate by MOCVD through Interfacial Misfit Dislocations Array. J. Mater. Sci. Technol. 28, 132–136 (2012)

    Article  Google Scholar 

  10. S. El Kazzi, L. Desplanque, C. Coinon, Y. Wang, P. Ruterana, X. Wallart, GaSb/GaP compliant interface for high electron mobility AlSb/InAs heterostructures on (001) GaP. Appl. Phys. Lett. 97, 192111 (2010)

    Article  Google Scholar 

  11. C. Jiang, H. Sakaki, Controlling anisotropy of GaSb (As)/GaAs quantum dots by self-assembled molecular beam epitaxy. Physica E Low Dimens. Syst. Nanostruc. 32, 17–20 (2006)

    Article  Google Scholar 

  12. J. Tatebayashi, A. Khoshakhlagh, S.H. Huang, L.R. Dawson, G. Balakrishnan, D.L. Huffaker, Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots. Appl. Phys. Lett. 89, 203116 (2006)

    Article  Google Scholar 

  13. E.A. Anyebe, M.K. Rajpalke, T.D. Veal, C.J. Jin, Z.M. Wang, Q.D. Zhuang, Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1-xSbx nanowires. Nano Res. 8, 1309–1319 (2015)

    Article  Google Scholar 

  14. Z.X. Yang, N. Han, M. Fang, H. Lin, H.Y. Cheung, S. Yip, E.J. Wang, T. Hung, C.Y. Wong, J.C. Ho, Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun. 5, 5249 (2014)

    Article  Google Scholar 

  15. J. Steinshnider, J. Harper, M. Weimer, C.H. Lin, S.S. Pei, D.H. Chow, Origin of antimony segregation in GaInSb/InAs strained-layer superlattices. Phys. Rev. Lett. 85, 4562 (2000)

    Article  Google Scholar 

  16. D.P. Woodruff, J. Robinson, Sb-induced surface stacking faults at Ag (111) and Cu (111) surfaces: density-functional theory results. J. Phys. Condens. Matter 12, 7699 (2000)

    Article  Google Scholar 

  17. B. Voigtländer, A. Zinner, T. Weber, H.P. Bonzel, Modification of growth kinetics in surfactant-mediated epitaxy. Phys. Rev. B 51, 7583 (1995)

    Article  Google Scholar 

  18. H. Bracht, S.P. Nicols, W. Walukiewicz, J.P. Silveira, F. Briones, E.E. Haller, Large disparity between gallium and antimony self-diffusion in gallium antimonide. Nature 408, 69–72 (2000)

    Article  Google Scholar 

  19. M. Kunrugsa, S. Kiravittaya, S. Panyakeow, S. Ratanathammaphan, Effect of Ga deposition rates on GaSb nanostructures grown by droplet epitaxy. J. Cryst. Growth 402, 285–290 (2014)

    Article  Google Scholar 

  20. J. Tatebayashi, B. Liang, D. Bussian, H. Htoon, S. Huang, G. Balakrishnan, V. Klimov, R. Dawson, D.L. Huffaker, Formation and optical characteristics of type-II strain-relieved GaSb/GaAs quantum dots by using an interfacial misfit growth mode. IEEE Trans. Nanotechnol. 8, 269–274 (2009)

    Article  Google Scholar 

  21. G. Balakrishnan, J. Tatebayashi, A. Khoshakhlagh, S.H. Huang, A. Jallipalli, L.R. Dawson, D.L. Huffaker, III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs. Appl. Phys. Lett. 89, 161104 (2006)

    Article  Google Scholar 

  22. Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817–1822 (2002)

    Article  Google Scholar 

  23. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A.F. i Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008)

    Article  Google Scholar 

  24. B. Liang, A. Lin, N. Pavarelli, C. Reyner, J. Tatebayashi, K. Nunna, J. He, T.J. Ochalski, G. Huyet, D.L. Huffaker, GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Nanotechnology 20, 455604 (2009)

    Article  Google Scholar 

  25. M. Bozkurt, J.M. Ulloa, P.M. Koenraad, An atomic scale study on the effect of Sb during capping of MBE grown III–V semiconductor QDs. Semicond. Sci. Technol. 26, 064007 (2011)

    Article  Google Scholar 

  26. E.A. El-Wahabb, S.S. Fouad, M. Fadel, Theoretical and experimental study of the conduction mechanism in Sb2 Se3 alloy. J. Mater. Sci. 38, 527–532 (2003)

    Article  Google Scholar 

  27. B.M. Borg, L.E. Wernersson, Synthesis and properties of antimonide nanowires. Nanotechnology 24, 202001 (2013)

    Article  Google Scholar 

  28. S. El Kazzi, L. Desplanque, X. Wallart, Y. Wang, P. Ruterana, Interplay between Sb flux and growth temperature during the formation of GaSb islands on GaP. J. Appl. Phys. 111, 123506 (2012)

    Article  Google Scholar 

  29. J.K. Shurtleff, S.W. Jun, G.B. Stringfellow, Surfactant effects on doping of GaAs grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 78, 3038–3040 (2001)

    Article  Google Scholar 

  30. K.A. Dick, S. Kodambaka, M.C. Reuter, K. Deppert, L. Samuelson, W. Seifert, L.R. Wallenberg, F.M. Ross, The morphology of axial and branched nanowire heterostructures. Nano Lett. 7, 1817–1822 (2007)

    Article  Google Scholar 

  31. B.M. Kinder, E.M. Goldys, Microstructural evolution of GaSb self-assembled islands grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 73, 1233–1235 (1998)

    Article  Google Scholar 

  32. K. Suzuki, R.A. Hogg, K. Tachibana, Y. Arakawa, Density control of GaSb/GaAs self-assembled quantum dots (∼25 nm) grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 37, L203 (1998)

    Article  Google Scholar 

  33. J. Narayan, S. Oktyabrsky, Formation of misfit dislocations in thin film heterostructures. J. Appl. Phys. 92, 7122–7127 (2002)

    Article  Google Scholar 

  34. S.A. Chaparro, Y. Zhang, J. Drucker, Strain relief via trench formation in Ge/Si (100) islands. Appl. Phys. Lett. 76, 3534–3536 (2000)

    Article  Google Scholar 

  35. U. Denker, O.G. Schmidt, N.Y. Jin-Philipp, K. Eberl, Trench formation around and between self-assembled Ge islands on Si. Appl. Phys. Lett. 78, 3723–3725 (2001)

    Article  Google Scholar 

  36. V.H. Nguyen, A. Dobbie, M. Myronov, D.R. Leadley, High quality relaxed germanium layers grown on (110) and (111) silicon substrates with reduced stacking fault formation. J. Appl. Phys. 114, 154306 (2013)

    Article  Google Scholar 

  37. E.T.R. Chidley, S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, P.J. Walker, Photoluminescence of GaSb grown by metal-organic vapour phase epitaxy. Semicond. Sci. Technol. 6, 45 (1991)

    Article  Google Scholar 

  38. C. Agert, P.S. Gladkov, A.W. Bett, Origin of the photoluminescence line at 0.8 eV in undoped and Si-doped GaSb grown by MOVPE. Semicond. Sci. Technol. 17, 39 (2002)

    Article  Google Scholar 

  39. S.C. Chen, Y.K. Su, Photoluminescence study of gallium antimonide grown by liquid-phase epitaxy. J. Appl. Phys. 66, 350–353 (1989)

    Article  Google Scholar 

  40. R.D. Wiersma, J.A.H. Stotz, O.J. Pitts, C.X. Wang, M.L.W. Thewalt, S.P. Watkins, Electrical and optical properties of carbon-doped GaSb. Phys. Rev. B 67, 165202 (2003)

    Article  Google Scholar 

  41. Y.J. Van der Meulen, Growth properties of GaSb: the structure of the residual acceptor centres. J. Phys. Chem. Solids 28, 25–32 (1967)

    Article  Google Scholar 

  42. G.R. Johnson, B.C. Cavenett, T.M. Kerr, P.B. Kirby, C.E.C. Wood, Optical, Hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy. Semicond. Sci. Technol. 3, 1157 (1988)

    Article  Google Scholar 

  43. S.S. Miya, V. Wagener, J.R. Botha, The optical and electrical properties of AP-MOVPE GaSb grown using TEGa and TMSb. Electron. Mater. Lett. 10, 373–378 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the TSMC, NCTU-UCB I-RiCE program, and the Ministry of Science and Technology, Taiwan, under Grant No. MOST 105-2911-I-009-301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Yi Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, CJ., Ha, MTH., Liu, CK. et al. Performance improvement of highly mismatched GaSb layers on GaAs by interfacial-treatment-assisted chemical vapor deposition. J Mater Sci: Mater Electron 28, 845–855 (2017). https://doi.org/10.1007/s10854-016-5599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5599-6

Keywords

Navigation