Skip to main content
Log in

Structural and solid state properties of l-leucinium p-toluenesulfonate monohydrate: an amino acid tosylate NLO crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An amino acid tosylate NLO crystal, l-leucinium p-toluenesulfonate monohydrate (LLPT) was synthesized and single crystal was grown by slow evaporation solution growth technique. The single crystal XRD study was employed to evaluate the structural properties and found good agreement with the reported values. The compound crystallized in the non-centrosymmetric orthorhombic cell setting with P212121 space group. The crystal packing is dominated by N–H···O and O–H···O hydrogen bonds leading to number of chain and ring motifs. These motifs are arranged in tandem along ab-plane of the crystal leading to alternate hydrophilic and hydrophobic layers along c-axis of the unit cell. Vibrational spectral measurements (FTIR and FT-Raman) shows the different functional groups and strength of the hydrogen bonds. The optical cutoff wavelength and absorbance studies of the compound have been examined by UV–Vis–NIR absorbance spectrum. The material did not show any significance absorption in the entire visible region and cutoff wavelength at 283 nm. The emission property of the material was analyzed by Photoluminescence study and the material has ultraviolet emission. TGA/DTA studies show that the material became anhydrous around 73 °C and start melting at 169 °C. Vicker’s microhardness test show that LLPT belongs to soft category material. The dielectric behaviour and solid state parameters of the compound were analyzed at room temperature by dielectric studies with varying frequency. Kurtz and Perry SHG tests confirms the materials ability to green emission when exposed to a laser with wavelength of 1064 nm and the SHG efficiency of 0.5 times the KDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Ashok Kumar, R. Ezhil Vizil, N. Vijayan, D. Rajan Babu, Phys. B 406, 2594–2600 (2011)

    Article  Google Scholar 

  2. D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1–2 (Academic Press, New York, 1987)

    Google Scholar 

  3. S. Gao, W. Chen, G. Wang, J. Chen, J. Cryst. Growth 297(2), 361–365 (2006)

    Article  Google Scholar 

  4. G.M. Frankenbach, M.C. Etter, J. Chem. Mater. 4, 271 (1994)

    Article  Google Scholar 

  5. R. Hanumantharao, S. Kalainathan, Spectrochim. Acta A 86, 86 (2012)

    Article  Google Scholar 

  6. T. Pal, T. Kar, G. Bocelli, L. Rigi, Cryst. Growth Des. 3, 13 (2003)

    Article  Google Scholar 

  7. S. Natarajan, S.A. Martin Britto, E. Ramachandran, Cryst. Growth Des. 6, 137 (2006)

    Article  Google Scholar 

  8. G. Ramesh Kumar, S. Gokul Raj, R. Mohan, R. Jeyavel, Cryst. Growth Des. 6, 1308 (2006)

    Article  Google Scholar 

  9. N. Vijayan, R. Remesh Babu, R. Gopalakrishnan, P. Ramasamy, M. Ichimura, M. Palanichamy, J. Cryst. Growth 273, 564 (2005)

    Article  Google Scholar 

  10. S.A. Martin Britto Dhas, S. Natarajan, Cryst. Res. Technol. 42, 471 (2007)

    Article  Google Scholar 

  11. A.S. Haja Hameed, C.W. Lan, J. Cryst. Growth 270, 475 (2004)

    Article  Google Scholar 

  12. M.K. Lu, F.Q. Meng, Z.H. Yang, W.T. Yu, H. Zeng, Cryst. Res. Technol. 31, 834 (1996)

    Article  Google Scholar 

  13. M. Suresh, S. Asath Bahadur, S. Athimoolam, Optik 126, 5452–5455 (2015)

    Article  Google Scholar 

  14. M. Suresh, S. Asath Bahadur, S. Athimoolam, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4334-7

    Google Scholar 

  15. M. Suresh, S. Asath Bahadur, S. Athimoolam, J. Mol. Struct. (2016). doi:10.1016/j.molstruc.2016.01.093

    Google Scholar 

  16. S. Adhikari, T. Kar, Mater. Chem. Phys. 133, 1055 (2012)

    Article  Google Scholar 

  17. S. Adhikari, T. Kar, J. Cryst. Growth 356, 4 (2012)

    Article  Google Scholar 

  18. M. Anbuvhezhiyan, S. Ponnusamy, C. Muthamizhchekvan, Optoelectron. Adv. Mater. 3, 1161 (2009)

    Google Scholar 

  19. M.K. Marchewka, M. Drozd, Cent. Eur. J. Chem. 11B, 1264 (2013)

    Google Scholar 

  20. G. Bhagannarayana, B. Riscob, M. Shakir, Mater. Chem. Phys. 126, 20 (2011)

    Article  Google Scholar 

  21. M.R. Jagadeesh, H.M. Suresh Kumar, R. Ananda Kumari, 33(3) 529–536 (2015)

  22. S. Brahadeeswaran, S. Onduk, M. Takagi, Y. Takahashi, H. Adachi, M. Yoshimura, Y. Mori, T. Sasaki, J. Cryst. Growth 292–2, 441–444 (2006)

    Article  Google Scholar 

  23. R. Xu, Acta Crystallogr. Sect. E E66, o1794 (2010)

    Article  Google Scholar 

  24. P. Vijayakumar, G. Anandha Babu, P. Ramasamy, Mater. Res. Bull. 47, 957–962 (2012)

    Article  Google Scholar 

  25. D. Chwaleba, M.M. Ilczyszyn, M. Ilczyszyn, Z. Ciunik, J. Mol. Struct. 831, 119–134 (2007)

    Article  Google Scholar 

  26. Ljupco Pejov, Mirjana Ristova, Bojan Soptrajanov, Spectrochim. Acta A 79, 27–34 (2011)

    Article  Google Scholar 

  27. Yu. Jin, Acta Cryst. E68, o1648 (2012)

    Google Scholar 

  28. G. Anandha Babu, P. Ramasamy, Spectrochim. Acta A 82, 521–526 (2011)

    Article  Google Scholar 

  29. S. Muralidharan, P. Nagapandiselvi, T. Srinivasan, R. Gopalakrishnan, D. Velmurugan, Acta Cryst. 69, o804 (2013)

    Google Scholar 

  30. M. Venkatesan, M. Saravanabhavan, M. Sekar, J. Photochem. Photobiol. B 140, 20–27 (2014)

    Article  Google Scholar 

  31. E. Selvakumar, G. Anandha Babu, P. Ramasamy, T. Rajnikant, R. Uma Devi, R. Meenakshi, A. Chandramohan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 125, 114–119 (2014)

    Article  Google Scholar 

  32. G. Peramaiyan, R. MohanKumar, G. Bhagavannarayana, J. Cryst. Growth 408, 14–18 (2014)

    Article  Google Scholar 

  33. I.P. Bincy, R. Gopalakrishnan, J. Cryst. Growth 402, 22–31 (2014)

    Article  Google Scholar 

  34. G.M. Sheldrick, Acta Cryst. C71, 3–8 (2015)

    Google Scholar 

  35. K. Hasegawa, A.K. Ishikawa, B.R. Kawaoka, B.C. Sano, B.K. Iitani, B.H. Komatsu, N. Nagashima, Acta Cryst. C54, 637–641 (1998)

    Google Scholar 

  36. D. Xue, S. Zhang, Chem. Phys. Lett. 301, 449 (1999)

    Article  Google Scholar 

  37. D. Xue, H. Ratajczak, J. Mol. Struct. (Theochem) 716, 207 (2005)

    Article  Google Scholar 

  38. D. Xue, S. Zhang, J. Solid State Chem. 135, 121 (1998)

    Article  Google Scholar 

  39. F. Zhang, D. Xue, Mod. Phys. Lett. B 23, 3943 (2009)

    Article  Google Scholar 

  40. H. Ratajczak, in Proceedings of the 3rd International Conference on Vibrational spectroscopy in Materials Science, Krakow, Poland, Book of Abstracts, September (2000), p. 21

  41. J. Antony, G.V. Helden, G. Meijer, B. Achmidt, J. Chem. Phys. 123, 014305–014316 (2005)

    Article  Google Scholar 

  42. H.D. Lutz, H. Christan, J. Mol. Struct. 101, 199 (1983)

    Article  Google Scholar 

  43. Y. LeFur, R. Masse, M.Z. Cherkaoui, J.F. Nicuod, Zeitschrift für Kristallographie 210, 856–860 (1995)

    Google Scholar 

  44. A.M. Badr, H.A. Elshaikh, I.M. Ashraf, J. Eng. Technol. Res. 3, 62 (2011)

    Google Scholar 

  45. S. Anandhi, T.S. Shyju, R. Gopalakrishnan, Optik 124, 5553 (2013)

    Article  Google Scholar 

  46. N.B. Singh, T. Henningsen, E.P.A. Metz, R. Hamacher, E. Cumberledge, R.H. Hopkins, Mater. Lett. 12, 270 (1991)

    Article  Google Scholar 

  47. U. Von Hundelshausen, Phys. Lett. A 34, 405 (1971)

    Article  Google Scholar 

  48. J.B. Charles, F.D. Gnanam, Cryst. Res. Technol. 29, 707 (1994)

    Article  Google Scholar 

  49. R.C. Miller, Appl. Phys. Lett. 5, 17 (1964)

    Article  Google Scholar 

  50. N.M. Ravindra, R.P. Bharadwaj, K. Sunil Kumar, V.K. Srinivastava, Infrared Phys. 21, 369 (1981)

    Article  Google Scholar 

  51. E.M. Onitsch, Mikroscopia 2, 131 (1941)

    Google Scholar 

  52. A. Wojciechowski, A.H. Reshak, R. Miedzinski, I.V. Kityk, J. Berdowski, Z. Tylcznski, Mater. Lett. 64, 1957–1959 (2010)

    Article  Google Scholar 

  53. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, First Indian Edition (CBS, Delhi, 1986)

    Google Scholar 

  54. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors S.A.B. thanks the CSIR for the financial support of this work through Research project scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Athimoolam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, M., Asath Bahadur, S. & Athimoolam, S. Structural and solid state properties of l-leucinium p-toluenesulfonate monohydrate: an amino acid tosylate NLO crystal. J Mater Sci: Mater Electron 28, 661–672 (2017). https://doi.org/10.1007/s10854-016-5572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5572-4

Keywords

Navigation