Skip to main content

Advertisement

Log in

Thermal and dielectric properties of multi-walled carbon nanotube–graphene oxide composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon based materials with a high dielectric performance and better thermal stability have great potential for many semiconductor device applications. In this paper, we report the preparation, thermal and dielectric properties of multi-walled carbon nanotube (MWCNT)–graphene oxide (GO) freestanding films. Different weight percentages of MWCNT–GO composite freestanding films were prepared using vacuum filtration method. Powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared, micro Raman and UV–Vis–NIR spectroscopy studies revealed that the homogeneous dispersion of MWCNT in the GO matrix. Thermal stability of the MWCNT–GO composites linearly increases with increasing MWCNT content from 5 to 30 wt%. Our results show that the addition of 30 wt% MWCNT in GO increases the dielectric constants from 17 to 807 at 100 Hz which was even very high compared to conventional dielectric materials. The improvement of dielectric constant is attributed to the formation of microcapacitors by highly conductive MWCNT segregated by GO sheets. Meanwhile, the Cole–Cole plot elucidates the two semicircles for all samples representing the serial arrangement of two units that attributed to the contribution from the bulk composite and the interface region of the MWCNT–GO. The radius of arc in impedance spectra decreases with increasing MWCNT weight percentage indicating the higher electrical conductivity. The present results suggest that MWCNT–GO composite films are having promising application in the high frequency capacitors, high performance dielectric based electronic and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.H. Lee, J. Kao, S.S. Parizi, G. Caruntub, T. Xu, Dielectric properties of barium titanate supramolecular nanocomposites. Nanoscale 6, 3526–3531 (2014)

    Article  Google Scholar 

  2. Q.M. Zhang, H.F. Li, M. Poh, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002)

    Article  Google Scholar 

  3. P. Kim, X.H. Zhang, B. Domercq, S.C. Jones, P.J. Hotchkiss, S.R. Marder, B. Kippelen, J.W. Perry, Solution-processible high-permittivity nanocomposite gate insulators for organic field effect transistors. Appl. Phys. Lett. 93, 013302 (2008)

    Article  Google Scholar 

  4. X. Yuhan, Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 1991)

    Google Scholar 

  5. Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76, 3804–3806 (2000)

    Article  Google Scholar 

  6. F. Akbar, M. Kolahdouz, Sh Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci.: Mater. Electron. 26, 4347–4379 (2015)

    Google Scholar 

  7. O.C. Compton, S.B.T. Nguyen, Graphene oxide, highly reduced graphene oxide and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010)

    Article  Google Scholar 

  8. D.W. Wang, A. Du, E. Taran, G.Q.M. Lu, I.R. Gentle, A water-dielectric capacitor using hydrated graphene oxide film. J. Mater. Chem. 22, 21085–21091 (2012)

    Article  Google Scholar 

  9. G.L. Li, G. Liu, M. Li, D. Wan, K.G. Neoh, E.T. Kang, Organo and water-dispersible graphene oxide–polymer nanosheets for organic electronic memory and gold nanocomposites. J. Phys. Chem. C 114, 12742–12748 (2010)

    Article  Google Scholar 

  10. Y. Gao, H.L. Yip, K.S. Chen, K.M. O’Malley, O. Acton, Y. Sun, G. Ting, H.Z. Chen, A.K.Y. Jen, Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Adv. Mater. 23, 1903–1908 (2011)

    Article  Google Scholar 

  11. D.R. Dreyer, H.P. Jia, C.W. Bielawski, Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010)

    Google Scholar 

  12. T. Bayer, S.R. Bishop, M. Nishihara, K. Sasaki, S.M. Lyth, Characterization of a graphene oxide membrane fuel cell. J. Power Sources 272, 239–247 (2014)

    Article  Google Scholar 

  13. Z. Kolahdouz, M. Kolahdouz, H. Ghanbari, S. Mohajerzadeh, S. Naureen, H.H. Radamson, Substrate engineering for Ni-assisted growth of carbon nano-tubes. Mater. Sci. Eng. B 177, 1542–1546 (2012)

    Article  Google Scholar 

  14. J. Zhang, M. Mine, D. Zhu, M. Matsuo, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47, 1311–1320 (2009)

    Article  Google Scholar 

  15. A. Kaniyoor, R.I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1, 382–386 (2009)

    Article  Google Scholar 

  16. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012)

    Article  Google Scholar 

  17. T. Kavinkumar, D. Sastikumar, S. Manivannan, Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature. RSC Adv. 5, 10816–10825 (2015)

    Article  Google Scholar 

  18. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  19. D. Yang, A. Velamakanni, G. Bozoklu et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon 47, 145–152 (2009)

    Article  Google Scholar 

  20. Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z.D. Huang, Z. Li, J.K. Kim, Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly. J. Mater. Chem. 22, 25072–25082 (2012)

    Article  Google Scholar 

  21. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)

    Article  Google Scholar 

  22. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29–35 (2012)

    Article  Google Scholar 

  23. R. Sharma, P. Pahuja, R.P. Tandon, Structural dielectric ferromagnetic ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014)

    Article  Google Scholar 

  24. C. Wu, X. Huang, X. Wu, L. Xie, K. Yang, P. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013)

    Article  Google Scholar 

  25. N. Chihaoui, R. Dhahri, M. Bejar, E. Dharhi, L.C. Costa, M.P.F. Graç, Electrical and dielectric properties of the Ca2MnO4−δ system. Solid State Commun. 151, 1331–1335 (2011)

    Article  Google Scholar 

  26. G. Chakraborty, K. Gupta, D. Rana, A. Meikap, Dielectric relaxation in polyvinyl alcohol–polypyrrole–multiwall carbon nanotube composites below room temperature. Adv. Nat. Sci. Nanosci.: Nanotechnol. 4, 025005 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manivannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavinkumar, T., Manivannan, S. Thermal and dielectric properties of multi-walled carbon nanotube–graphene oxide composite. J Mater Sci: Mater Electron 28, 344–353 (2017). https://doi.org/10.1007/s10854-016-5529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5529-7

Keywords

Navigation