Skip to main content
Log in

Direction-controlled growth of nickel nanowire between electrodes with the assistance of magnetic field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a novel bridging technique for the direction-controlled growth of nickel nanowires between pre-fabricated Au electrodes under magnetic field. The nanowires grew on the tip of an electrode with the assistance of an external magnetic field. The nanowires, about 150 nm in diameter and a few of micrometers in length, had high uniformity and grew spontaneously along the direction of the magnetic field. The growth direction of the nanowires was along the magnetic field gradient. Transport measurements show Coulomb blockade behavior. The nanowire interconnections yield potential barriers to carrier transport between the nanowires and the electrodes. Understanding and using the effects will allow the controlled fabrication of nanoelectronic devices in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Blakemore, J. Appl. Phys. 53(10), R123 (1982)

    Article  Google Scholar 

  2. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409(6816), 66 (2001)

    Article  Google Scholar 

  3. L. Dong, J. Bush, V. Chirayos, R. Solanki, J. Jiao, Y. Ono, J.F. Conley, B.D. Ulrich, Nano Lett. 5(10), 2112 (2005)

    Article  Google Scholar 

  4. S.A. Dayeh, E.T. Yu, D. Wang, Small 3(10), 1683 (2007)

    Article  Google Scholar 

  5. H. Xia, Z.-Y. Lu, T.-X. Li, P. Parkinson, Z.-M. Liao, F.-H. Liu, W. Lu, W.-D. Hu, P.-P. Chen, H.-Y. Xu, ACS Nano 6(7), 6005 (2012)

    Article  Google Scholar 

  6. P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A.F.I. Morral, Nat. Photonics 7(4), 306 (2013)

    Article  Google Scholar 

  7. N. Guo, W. Hu, L. Liao, S. Yip, J.C. Ho, J. Miao, Z. Zhang, J. Zou, T. Jiang, S. Wu, X. Chen, W. Lu, Adv. Mater. 26(48), 8203 (2014)

    Article  Google Scholar 

  8. Z. Zhang, X. Han, J. Zou, Sci. China Mater. 58(6), 433 (2015)

    Article  Google Scholar 

  9. D.T.X. Nguyen, T.B. Tran, P.-D. Nguyen, J. Mi, J. Nanosci. Nanotechnol. 16(3), 2933 (2016)

    Article  Google Scholar 

  10. U.J. Kim, G.Y. Bae, D.I. Suh, W. Park, J. Nanosci. Nanotechnol. 16(3), 2887 (2016)

    Article  Google Scholar 

  11. C.S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, Z.L. Wang, Nano Lett. 6(2), 263 (2006)

    Article  Google Scholar 

  12. S.-K. Kim, J. Nanosci. Nanotechnol. 16(3), 2706 (2016)

    Article  Google Scholar 

  13. S. Zhao, D. Choi, T. Lee, A.K. Boyd, P. Barbara, E. Van Keuren, J.-I. Hahm, J. Phys. Chem. C 119(26), 14483 (2014)

    Article  Google Scholar 

  14. K.Y. Lee, H. Hwang, W. Choi, A.C.S. Appl, Mater. Inter. 6(17), 15575 (2014)

    Article  Google Scholar 

  15. V. Hoffmann, A. Mogilatenko, C. Netzel, U. Zeimer, S. Einfeldt, M. Weyers, M. Kneissl, J. Cryst. Growth 391, 46 (2014)

    Article  Google Scholar 

  16. Y.-H. Lee, Y.-T. Jang, C.-H. Choi, D.-H. Kim, C.-W. Lee, J.-E. Lee, Y.-S. Han, S.-S. Yoon, J.-K. Shin, S.-T. Kim, Adv. Mater. 13(18), 1371 (2001)

    Article  Google Scholar 

  17. J. Zou, M. Paladugu, H. Wang, G.J. Auchterlonie, Y.N. Guo, Y. Kim, Q. Gao, H.J. Joyce, H.H. Tan, C. Jagadish, Small 3(3), 389 (2007)

    Article  Google Scholar 

  18. Y.-N. Guo, H.-Y. Xu, G.J. Auchterlonie, T. Burgess, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, H.-B. Shu, X.-S. Chen, Nano Lett. 13(2), 643 (2013)

    Article  Google Scholar 

  19. L. Lugani, D. Ercolani, L. Sorba, N.V. Sibirev, M. Timofeeva, V. Dubrovskii, Nanotechnology 23(9), 095602 (2012)

    Article  Google Scholar 

  20. Y. Wang, A.S. Angelatos, F. Caruso, Chem. Mater. 20(3), 848 (2007)

    Article  Google Scholar 

  21. B. Mu, W. Zhang, A. Wang, J. Nanopart. Res. 16(6), 1 (2014)

    Article  Google Scholar 

  22. C. Liu, K. Wang, S. Luo, Y. Tang, L. Chen, Small 7(9), 1203 (2011)

    Article  Google Scholar 

  23. L. Chen, Y. Tang, K. Wang, C. Liu, S. Luo, Electrochem. Commun. 13(2), 133 (2011)

    Article  Google Scholar 

  24. P. Sun, Y. Li, X. Meng, S. Yu, Y. Liu, F. Liu, Z. Wang, J. Mater. Sci.: Mater. Electron. 25(7), 2974 (2014)

    Google Scholar 

  25. G. Heidari, S.M. Khoie, M.E. Abrishami, M. Javanbakht, J. Mater. Sci.: Mater. Electron. 26(3), 1969 (2015)

    Google Scholar 

  26. S. Xie, J. Gou, Z. Yang, J. Nanosci. Nanotechnol. 15(5), 3994 (2015)

    Article  Google Scholar 

  27. J. Gou, S. Xie, J. Optoelectron. Adv. Mater. 8(9–10), 825 (2014)

    Google Scholar 

  28. L. Huang, L. Xu, H. Zhang, N. Gu, Chem. Commun. 72 (2002)

  29. L. Xu, J. Liao, L. Huang, D. Ou, Z. Guo, H. Zhang, C. Ge, N. Gu, J. Liu, Thin Solid Films 434(1), 121 (2003)

    Article  Google Scholar 

  30. S. De Franceschi, J. Van Dam, E. Bakkers, L. Feiner, L. Gurevich, L.P. Kouwenhoven, Appl. Phys. Lett. 83(2), 344 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of Shandong Province, China (Nos. ZR2015EL001, ZR2014EMP012) and the scientific research fund project of Binzhou University (BZXYG08, BZXYG1514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S. Direction-controlled growth of nickel nanowire between electrodes with the assistance of magnetic field. J Mater Sci: Mater Electron 27, 10975–10979 (2016). https://doi.org/10.1007/s10854-016-5213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5213-y

Keywords

Navigation