Skip to main content
Log in

Optically active helical polyurea@attapulgite composites with high dielectric constant and low infrared emissivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optically active helical polyurea@attapulgite (HPUA@ATP) composites were prepared after the surface modification of the rod-like attapulgite (ATP). Composites were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the helical polyureas have been successfully grafted onto the surfaces of the modified ATP (A-ATP) without destroying the original crystalline structure of ATP. The rod-like nanoparticles were confirmed by transmission electron microscopy. The dielectric constant and infrared emissivity have been investigated, and the results indicate that the dielectric constant value of HPUA@ATP composite has been increased to 33.62 from 25.35 (the value of bare ATP), while the infrared emissivity value of HPUA@ATP composite has been reduced to 0.39 from 0.93 (the value of bare ATP), due to the interfacial interactions between organics and inorganics and the ordered stereostructures of optically active helical polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.M. Reaney et al., J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  2. D. Maurya et al., Sci. Rep. 5, 15144 (2015). doi:10.1038/srep15144

    Article  Google Scholar 

  3. N.D. Orloff et al., Sci. Rep. 5, 17019 (2015). doi:10.1038/srep17019

    Article  Google Scholar 

  4. T. Rojac, M. Kosec, D. Damjanovic, J. Am. Ceram. Soc. 94, 4108–4111 (2011)

    Article  Google Scholar 

  5. H.A. Avila, L.A. Ramajo, M.S. Goes, M.M. Reboredo, M.S. Castro, R. Parra, ACS Appl. Mater. Interfaces 5, 505–510 (2013)

    Article  Google Scholar 

  6. Q. Wang, L. Zhu, J. Polym. Sci. Part B Polym. Phys. 49, 1421–1429 (2011)

    Article  Google Scholar 

  7. J. Li, S. Seok, B. Chu, F. Dogan, Q. Zhang, Q. Wang, Adv. Mater. 21, 217–221 (2009)

    Article  Google Scholar 

  8. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57, 660–723 (2012)

    Article  Google Scholar 

  9. F. Wen, Z. Xu, W.M. Xia, X.Y. Wei, Z.C. Zhang, Polym. Eng. Sci. 53, 897–904 (2013)

    Article  Google Scholar 

  10. C.W. Beier, J.M. Sanders, R.L. Brutchey, J. Phys. Chem. C 117, 6958–6965 (2013)

    Article  Google Scholar 

  11. S.P. Mahulikar, H.R. Sonawane, G.A. Rao, Prog. Aerosp. Sci. 43, 218–245 (2007)

    Article  Google Scholar 

  12. P.K. Biswas et al., Mater. Lett. 57, 2326–2332 (2003)

    Article  Google Scholar 

  13. B. Lin, J. Tang, H. Liu, Y. Sun, C. Yuan, J. Solid State Chem. 78, 650–654 (2005)

    Google Scholar 

  14. B. Lin, H. Liu, S. Zhang, C. Yuan, J. Solid State Chem. 177, 3849–3852 (2004)

    Article  Google Scholar 

  15. J. Yi, X. He, Y. Sun, Y. Li, M. Li, Appl. Surf. Sci. 253, 7100–7103 (2007)

    Article  Google Scholar 

  16. S. Zulfiqar, A. Kausar, M. Rizwan, M.I. Sarwar, Appl. Surf. Sci. 255, 2080–2086 (2008)

    Article  Google Scholar 

  17. P. Fardim, B. Holmbom, Appl. Surf. Sci. 249, 393–407 (2005)

    Article  Google Scholar 

  18. Y. Song, Y. Yao, C. Chen, K. Cui, L. Wang, Appl. Surf. Sci. 254, 3306–3312 (2008)

    Article  Google Scholar 

  19. L. Wang, J. Sheng, Polymer 46, 6243–6249 (2005)

    Article  Google Scholar 

  20. M. Ren et al., Appl. Surf. Sci. 254, 7314–7320 (2008)

    Article  Google Scholar 

  21. E.H. Smith, T. Vengris, Crit. Rev. Anal. Chem. 28, 13–18 (1998)

    Article  Google Scholar 

  22. J.J. Li, P. Khanchaitit, K. Han, Q. Wang, Chem. Mater. 22, 5350–5357 (2010)

    Article  Google Scholar 

  23. A. Maliakal, H. Katz, P. Cotts, S. Subramoney, P. Mirau, J. Am. Chem. Soc. 127, 14655–14662 (2005)

    Article  Google Scholar 

  24. Y. Song, Y. Shen, H.Y. Liu, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. 22, 16491–16498 (2012)

    Article  Google Scholar 

  25. J. Chon, S. Ye, K.J. Cha, S.C. Lee, Y.S. Koo, J.H. Jung, Y.K. Kwon, Chem. Mater. 22, 5445–5452 (2010)

    Article  Google Scholar 

  26. J. Li, J. Claude, L. Norena-Franco, S. Seok, Q. Wang, Chem. Mater. 20, 6304–6306 (2008)

    Article  Google Scholar 

  27. D.N. McCarthy, H. Stoyanov, D. Rychkov, H. Ragusch, M. Melzer, G. Kofod, Compos. Sci. Technol. 72, 731–736 (2012)

    Article  Google Scholar 

  28. K. Yang, X.Y. Huang, L.Y. Xie, C. Wu, P.K. Jiang, T. Tanaka, Macromol. Rapid Commun. 33, 1921–1926 (2012)

    Article  Google Scholar 

  29. M.N. Tchoul, S.P. Fillery, H. Koerner, L.F. Drummy, F.T. Oyerokun, P.A. Mirau, M.F. Durstock, R.A. Vaia, Chem. Mater. 22, 1749–1759 (2010)

    Article  Google Scholar 

  30. B. Balasubramanian, K. Kraemer, N. Reding, R. Skomski, S. Ducharme, D. Sellmyer, ACS Nano 4, 1893–1900 (2010)

    Article  Google Scholar 

  31. K. Yang, X. Huang, Y. Huang, L. Xie, P. Jiang, Chem. Mater. 25, 2327–2338 (2013)

    Article  Google Scholar 

  32. L.T. Vo, S.H. Anastasiadis, E.P. Giannelis, Macromolecules 44, 6162–6171 (2011)

    Article  Google Scholar 

  33. H.B. Bradl, Colloid Interface Sci. 277, 1–18 (2004)

    Article  Google Scholar 

  34. S.S. Gupta, K.G. Bhattacharyya, Colloid Interface Sci. 295, 21–32 (2006)

    Article  Google Scholar 

  35. S.V. Vinogradov, T.K. Bronich, A.V. Kabanov, Adv. Drug Deliv. Rev. 54, 135–147 (2002)

    Article  Google Scholar 

  36. R.X. Zhao, P. Torley, P.J. Halley, J. Mater. Sci. 43, 3058–3071 (2008)

    Article  Google Scholar 

  37. P. Kim et al., ACS Nano 3, 2581–2592 (2009)

    Article  Google Scholar 

  38. W. Yan, Z.J. Han, B.T. Phung, K. Ostrikov, ACS Appl. Mater. Interfaces 4, 2637–2642 (2012)

    Article  Google Scholar 

  39. H. Takele et al., Eur. Phys. J. Appl. Phys. 33, 83–89 (2006)

    Article  Google Scholar 

  40. J. Cao, N.F. Yang, J.C. Li, L.W. Yang, Polym. Bull. 59, 481–490 (2007)

    Article  Google Scholar 

  41. G.L. Yuan, F. Zou, S. Yin, N. Kuramoto, Polym. Bull. 61, 705–711 (2008)

    Article  Google Scholar 

  42. R. Nishiyabu, P. Anzenbacher Jr., J. Am. Chem. Soc. 127, 8270–8271 (2005)

    Article  Google Scholar 

  43. A. Buryak, K. Severin, J. Am. Chem. Soc. 127, 3700–3701 (2005)

    Article  Google Scholar 

  44. Y. Liu, P. Liu, Z. Su, Synth. Met. 157, 585–591 (2007)

    Article  Google Scholar 

  45. J.P. Zhang, Q. Wang, A.Q. Wang, Carbohydr. Polym. 68, 367–374 (2007)

    Article  Google Scholar 

  46. P. Liu, J.S. Guo, Colloids Surf. A Physicochem. Eng. Asp. 282, 498–503 (2006)

    Article  Google Scholar 

  47. P. Liu, T. Wang, Ind. Eng. Chem. Res. 46, 97–102 (2007)

    Article  Google Scholar 

  48. N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 1567–1578 (2010)

    Article  Google Scholar 

  49. Z. Li, L.A. Fredin, P. Tewari, S.A. DiBenedetto, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 5154–5164 (2010)

    Article  Google Scholar 

  50. Y. Shen, Y.H. Lin, M. Li, C.W. Nan, Adv. Mater. 19, 1418–1422 (2007)

    Article  Google Scholar 

  51. H.M. Jung, J.H. Kang, S.Y. Yang, J.C. Won, Y.S. Kim, Chem. Mater. 22, 450–456 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Nature Science Foundation of China (21104037), Natural Science Foundation of Zhejiang (Y4110586), Natural Science Foundation of Ningbo (2013A610014) and Scientific research project of Zhejiang Education Department (Y201016076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, B. & Xu, Z. Optically active helical polyurea@attapulgite composites with high dielectric constant and low infrared emissivity. J Mater Sci: Mater Electron 27, 10276–10281 (2016). https://doi.org/10.1007/s10854-016-5109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5109-x

Keywords

Navigation